系统评测指标:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F-Score
示例:假如某个班级有男生80人,女生20人,共计100人.目标是找出所有女生. 现在某人挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了. 作为评估者的你需要来评估(evaluation)下他的工作。
一、概念
1.1 准确率(Accurary):对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。
前面的场景中,实际情况是那个班级有男和女两类,某人(也就是定义中所说的分类器)把班级中的人分为男女两类。Accuracy就是分类正确的人占总人数的比例。很容易,我们可以得到:他把其中70(20女+50男)人判定正确了,而总人数是100人,所以它的Accuracy就是70 %(70 / 100).
在说precision,recall和f1-measure之前,我们需要先需要定义TP,FN,FP,TN四种分类情况. 按照前面例子,我们需要从一个班级中的人中寻找所有女生,如果把这个任务当成一个分类器的话,那么女生就是我们需要的,而男生不是,所以我们称女生为"正类",而男生为"负类".
通过这张表,我们可以很容易得到这几个值: TP=20 FP=30 FN=0 TN=50
1.2 精确率(precision):实际被检索到的结果中(TP+FP)有多少(TP)是理论正确的结果
公式是P=TP/(TP+FP),它计算的是所有"正确被检索的item(TP)"占所有"实际被检索到的(TP+FP)"的比例.
在例子中就是希望知道此君得到的所有人中,正确的人(也就是女生)占有的比例.所以其precision也就是40%(20女生/(20女生+30误判为女生的男生)).
1.3 召回率(recall):理论正确的结果(TP+FN)中有多少(TP)被实际正确检索到了
公式是R=TP / (TP+FN),它计算的是所有"正确被检索的item(TP)"占所有"应该检索到的item(TP+FN)"的比例。
在例子中就是希望知道此君得到的女生占本班中所有女生的比例,所以其recall也就是100%(20女生/(20女生+ 0 误判为男生的女生))
上述两者的取值在0-1之间,数值接近于1,精确率(查准率)和召回率(查全率)就越高。
1.4 F-Score值就是精确值和召回率的调和均值,也就是
公式:2/F=1/P+1/R
调整为:F=2PR/(P+R)
例子中 F1-measure 也就是约为 57.143%=2∗0.4∗1/(0.4+1).
示例:
某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:
精确率 = 700 / (700 + 200 + 100) = 70%
召回率 = 700 / 1400 = 50%
F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%
不妨看看如果把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:
精确率 = 1400 / (1400 + 300 + 300) = 70%
召回率 = 1400 / 1400 = 100%
F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%
由此可见,精确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。
当然希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。
综合评价
P和R指标有时候会出现矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。
F-Measure是Precision和Recall加权调和平均:
当参数α=1时,就是最常见的F1,也即
可知,F1综合了P和R的结果,当F1较高时则能说明试验方法比较有效。