VCF文件-VCFv4.2示例解释

VCF文件示例(VCFv4.2)

 

复制代码
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS     ID        REF    ALT     QUAL FILTER INFO                              FORMAT      NA00001        NA00002        NA00003
20     14370   rs6054257 G      A       29   PASS   NS=3;DP=14;AF=0.5;DB;H2           GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20     17330   .         T      A       3    q10    NS=3;DP=11;AF=0.017               GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3   0/0:41:3
20     1110696 rs6040355 A      G,T     67   PASS   NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2   2/2:35:4
20     1230237 .         T      .       47   PASS   NS=3;DP=13;AA=T                   GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20     1234567 microsat1 GTC    G,GTCT  50   PASS   NS=3;DP=9;AA=G                    GT:GQ:DP    0/1:35:4       0/2:17:2       1/1:40:3
复制代码

 

CHROM:       表示变异位点是在哪个contig 里call出来的,如果是人类全基因组的话那就是chr1…chr22,chrX,Y,M。

POS:          变异位点相对于参考基因组所在的位置,如果是indel,就是第一个碱基所在的位置。

ID:            如果call出来的SNP存在于dbSNP数据库里,就会显示相应的dbSNP里的rs编号。

REFREF:     在这个变异位点处,参考基因组中所对应的碱基和研究对象基因组中所对应的碱基。

QUAL:         可以理解为所call出来的变异位点的质量值。Q=-10lgP,Q表示质量值;P表示这个位点发生错误的概率。因此,如果想把错误率从控制在90%以上,P的阈值就是1/10,那lg(1/10)=-1,Q=(-10)*(-1)=10。同理,当Q=20时,错误率就控制在了0.01。

FILTER:       理想情况下,QUAL这个值应该是用所有的错误模型算出来的,这个值就可以代表正确的变异位点了,但是事实是做不到的。因此,还需要对原始变异位点做进一步的过滤。无论你用什么方法对变异位点进行过滤,过滤完了之后,在FILTER一栏都会留下过滤记录,如果是通过了过滤标准,那么这些通过标准的好的变异位点的FILTER一栏就会注释一个PASS,如果没有通过过滤,就会在FILTER这一栏提示除了PASS的其他信息。如果这一栏是一个“.”的话,就说明没有进行过任何过滤。

 

例子:

复制代码
#CHROM  POS ID      REF ALT QUAL    FILTER  INFO    FORMAT  NA12878
chr1    873762  .       T   G   5231.78 PASS    AC=1;AF=0.50;AN=2;DP=315;Dels=0.00;HRun=2;HaplotypeScore=15.11;MQ=91.05;MQ0=15;QD=16.61;SB=-1533.02;VQSLOD=-1.5473 GT:AD:DP:GQ:PL   0/1:173,141:282:99:255,0,255
chr1    877664  rs3828047   A   G   3931.66 PASS    AC=2;AF=1.00;AN=2;DB;DP=105;Dels=0.00;HRun=1;HaplotypeScore=1.59;MQ=92.52;MQ0=4;QD=37.44;SB=-1152.13;VQSLOD= 0.1185 GT:AD:DP:GQ:PL  1/1:0,105:94:99:255,255,0
chr1    899282  rs28548431  C   T   71.77   PASS    AC=1;AF=0.50;AN=2;DB;DP=4;Dels=0.00;HRun=0;HaplotypeScore=0.00;MQ=99.00;MQ0=0;QD=17.94;SB=-46.55;VQSLOD=-1.9148 GT:AD:DP:GQ:PL  0/1:1,3:4:25.92:103,0,26
chr1    974165  rs9442391   T   C   29.84   LowQual AC=1;AF=0.50;AN=2;DB;DP=18;Dels=0.00;HRun=1;HaplotypeScore=0.16;MQ=95.26;MQ0=0;QD=1.66;SB=-0.98 GT:AD:DP:GQ:PL  0/1:14,4:14:60.91:61,0,255
复制代码

 

到现在,我们就可以解释上面的例子:

chr1:873762 是一个新发现的T/G变异,并且有很高的可信度(qual=5231.78)。

chr1:877664 是一个已知的变异为A/G 的SNP位点,名字rs3828047,并且具有很高的可信度(qual=3931.66)。

chr1:899282 是一个已知的变异为C/T的SNP位点,名字rs28548431,但可信度较低(qual=71.77)。

chr1:974165 是一个已知的变异为T/C的SNP位点,名字rs9442391,但是这个位点的质量值很低,被标 成了“LowQual”,在后续分析中可以被过滤掉。

 

Vcf文件看起来很复杂,挺吓人的样子,但是里面大部分都是一些tags,而这些tags基本上都是在VASR中过滤用的,能够理解每个tags的意思最好,如果实在不理解也就不用管了。其实最关键的信息也就是那么几列:

chr1    873762      .       T   G   [CLIPPED]  GT:AD:DP:GQ:PL    0/1:173,141:282:99:255,0,255

chr1    877664  rs3828047   A   G   [CLIPPED]  GT:AD:DP:GQ:PL    1/1:0,105:94:99:255,255,0

chr1    899282  rs28548431  C   T   [CLIPPED]  GT:AD:DP:GQ:PL    0/1:1,3:4:25.92:103,0,26

 

其中最后面两列是相对应的,每一个tag对应一个或者一组值,如:

chr1:873762,GT对应0/1;AD对应173,141;DP对应282;GQ对应99;PL对应255,0,255。

 

GT:    表示这个样本的基因型,对于一个二倍体生物,GT值表示的是这个样本在这个位点所携带的两个等位基因。0表示跟REF一样;1表示表示跟ALT一样;2表示第二个ALT。当只有一个ALT 等位基因的时候,0/0表示纯和且跟REF一致;0/1表示杂合,两个allele一个是ALT一个是REF;1/1表示纯和且都为ALT; The most common format subfield is GT (genotype) data. If the GT subfield is present, it must be the first subfield. In the sample data, genotype alleles are numeric: the REF allele is 0, the first ALT allele is 1, and so on. The allele separator is '/' for unphased genotypes and '|' for phased genotypes.

0 - reference call

1 - alternative call 1

2 - alternative call 2

AD:    对应两个以逗号隔开的值,这两个值分别表示覆盖到REF和ALT碱基的reads数,相当于支持REF和支持ALT的测序深度。

DP:    覆盖到这个位点的总的reads数量,相当于这个位点的深度(并不是多有的reads数量,而是大概一定质量值要求的reads数)。

PL:      对应3个以逗号隔开的值,这三个值分别表示该位点基因型是0/0,0/1,1/1的没经过先验的标准化Phred-scaled似然值(L)。如果转换成支持该基因型概率(P)的话,由于L=-10lgP,那么P=10^(-L/10),因此,当L值为0时,P=10^0=1。因此,这个值越小,支持概率就越大,也就是说是这个基因型的可能性越大。

GQ:   表示最可能的基因型的质量值。表示的意义同QUAL。

 

举个例子说明一下:

chr1    899282  rs28548431  C   T   [CLIPPED]  GT:AD:DP:GQ:PL    0/1:1,3:4:25.92:103,0,26

在这个位点,GT=0/1,也就是说这个位点的基因型是C/T;GQ=25.92,质量值并不算太高,可能是因为cover到这个位点的reads数太少,DP=4,也就是说只有4条reads支持这个地方的变异;AD=1,3,也就是说支持REF的read有一条,支持ALT的有3条;在PL里,这个位点基因型的不确定性就表现的更突出了,0/1的PL值为0,虽然支持0/1的概率很高;但是1/1的PL值只有26,也就是说还有10^(-2.6)=0.25%的可能性是1/1;但几乎不可能是0/0,因为支持0/0的概率只有10^(-10.3)=5*10-11

posted on 2019-11-12 21:05  萧飞IDO  阅读(1551)  评论(0编辑  收藏  举报

导航