周记8

PHP的一些问题

PHP-FPM 运行模式

php-fpm的进程数可以根据设置分为动态和静态。

  • 静态:直接开启指定数量的php-fpm进程,不再增加或者减少;
  • 动态:开始的时候开启一定数量的php-fpm进程,当请求量变大的时候,动态的增加php-fpm进程数到上限,当空闲的时候自动释放空闲的进程数到一个下限。

这里先说一下涉及到这个的几个参数吧,他们分别是pm、pm.max_children、pm.start_servers、pm.min_spare_servers和pm.max_spare_servers。
pm表示使用那种方式,有两个值可以选择,就是static(静态)或者dynamic(动态)。在更老一些的版本中,dynamic被称作apache-like。这个要注意看配置文件给出的说明了。
下面4个参数的意思分别为:

  • pm.max_children:静态方式下开启的php-fpm进程数量。
  • pm.start_servers:动态方式下的起始php-fpm进程数量。
  • pm.min_spare_servers:动态方式下的最小php-fpm进程数量。
  • pm.max_spare_servers:动态方式下的最大php-fpm进程数量。

那么,对于我们的服务器,选择哪种执行方式比较好呢?事实上,跟Apache一样,我们运行的PHP程序在执行完成后,或多或少会有内存泄露的问题。这也是为什么开始的时候一个php-fpm进程只占用3M左右内存,运行一段时间后就会上升到20-30M的原因了。所以,动态方式因为会结束掉多余 的进程,可以回收释放一些内存,所以推荐在内存较少的服务器或者VPS上使用。具体最大数量根据 内存/20M 得到。比如说512M的VPS,建议pm.max_spare_servers设置为20。至于pm.min_spare_servers,则建议根据服务器的负载情况来设置,比较合适的值在5~10之间。

然后对于比较大内存的服务器来说,设置为静态的话会提高效率。因为频繁开关php-fpm进程也会有时滞,所以内存够大的情况下开静态效果会更好。数量也可以根据 内存/30M 得到。比如说2GB内存的服务器,可以设置为50;4GB内存可以设置为100等。

Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接收到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端。

总结一下 fpm运行是多线程模型 分为静态和动态两种模式

静态更加适合内存良好的机器

动态更适合内存小的机器

静态的分配原理是 机器内存 / 30

动态的分配原则是 机器内存 / 20

动态能动态的开闭worker 可以避免一些 内存泄漏问题~

OPcache

PHP(本文所述案例PHP版本均为7.1.3)作为一门动态脚本语言,其在zend虚拟机执行过程为:读入脚本程序字符串,经由词法分析器将其转换为单词符号,接着语法分析器从中发现语法结构后生成抽象语法树,再经静态编译器生成opcode,最后经解释器模拟机器指令来执行每一条opcode。

在上述整个环节中,生成的opcode可以应用编译优化技术如死代码删除、条件常量传播、函数内联等各种优化来精简opcode,达到提高代码的执行性能的目的。

PHP扩展opcache,针对生成的opcode基于共享内存支持了缓存优化。在此基础上又加入了opcode的静态编译优化。这里所述优化通常采用优化器(Optimizer)来管理,编译原理中,一般用优化遍(Opt pass)来描述每一个优化。

整体上说,优化遍分两种:

一种是分析pass,是提供数据流、控制流分析信息为转换pass提供辅助信息;

一种是转换pass,它会改变生成代码,包括增删指令、改变替换指令、调整指令顺序等,通常每一个pass前后可dump出生成代码的变化。

本文基于编译原理,结合opcache扩展提供的优化器,以PHP编译基本单位op_array、PHP执行最小单位opcode为出发点。介绍编译优化技术在Zend虚拟机中的应用,梳理各个优化遍是如何一步步优化opcode来提高代码执行性能的。最后结合PHP语言虚拟机执行给出几点展望。

OPcache 缓存的最小粒度 我认为是 单个PHP 文件

使用下列推荐设置来获得较好的性能:

opcache.memory_consumption=128
opcache.interned_strings_buffer=8
opcache.max_accelerated_files=4000
opcache.revalidate_freq=60
opcache.fast_shutdown=1
opcache.enable_cli=1
opcache.save_comments=0

你也可以禁用 opcache.save_comments 并且启用 opcache.enable_file_override。 需要提醒的是,在生产环境中使用上述配置之前,必须经过严格测试。 因为上述配置存在一个已知问题,它会引发一些框架和应用的异常, 尤其是在存在文档使用了备注注解的时候。

静态编译 解释执行 即时编译

静态编译(static compilation),也称事前编译(ahead-of-time compilation),简称AOT。即把源代码编译成目标代码,执行时在支持目标代码的平台上运行。

动态编译(dynamic compilation),相对于静态编译而言,指”在运行时进行编译”。通常情况下采用解释器(interpreter)编译执行,它是指一条一条的解释执行源语言。

JIT编译(just-in-time compilation),即即时编译,狭义指某段代码即将第一次被执行时进行编译,而后则不用编译直接执行,它为动态编译的一种特例。 PHP8 HHVM

OP_ARRAY

类似于C语言的栈帧(stack frame)概念,即一个运行程序的基本单位(一帧),一般为一次函数调用的基本单位。此处,一个函数或方法、整个PHP脚本文件、传给eval表示PHP代码的字符串都会被编译成一个op_array。

实现上op_array为一个包含程序运行基本单位的所有信息的结构体,当然opcode数组为该结构最为重要的字段,不过除此之外还包含变量类型、注释信息、异常捕获信息、跳转信息等。

OPCODE

解释器执行(ZendVM)过程即是执行一个基本单位op_array内的最小优化opcode,按顺序遍历执行,执行当前opcode,会预取下一条opcode,直到最后一个RETRUN这个特殊的opcode返回退出。

这里的opcode某种程度也类似于静态编译器里的中间表示(类似于LLVM IR),通常也采用三地址码的形式,即包含一个操作符,两个操作数及一个运算结果。其中两个操作数均包含类型信息。此处类型信息有五种,分别为:

编译变量(Compiled Variable,简称CV),编译时变量即为php脚本中定义的变量。

内部可重用变量(VAR),供ZendVM使用的临时变量,可与其它opcode共用。

内部不可重用变量(TMP_VAR),供ZendVM使用的临时变量,不可与其它opcode共用。

常量(CONST),只读常量,值不可被更改。

无用变量(UNUSED)。由于opcode采用三地址码,不是每一个opcode均有操作数字段,缺省时用该变量补齐字段。

类型信息与操作符一起,供执行器匹配选择特定已编译好的C函数库模板,模拟生成机器指令来执行。

参考资料:https://tech.youzan.com/understanding-opcode-optimization-in-php/

PHP 脚本执行过程

PHP -> lex -> tokens -> parse -> simple 表达式 -> compile -> opcode -> zendvm -> exec

1)Scanning(Lexing) ,将PHP代码转换为语言片段(Tokens)。

2)Parsing, 将Tokens转换成简单而有意义的表达式。

3)Compilation, 将表达式编译成Opocdes。

4)Execution, 顺次执行Opcodes,每次一条,从而实现PHP脚本的功能。

PHP内存模型与执行模型

内存管理一般会包括以下内容:

是否有足够的内存供我们的程序使用;

如何从足够可用的内存中获取部分内存;

对于使用后的内存,是否可以将其销毁并将其重新分配给其它程序使用。

PHP底层对内存的管理, 围绕着小块内存列表(free_buckets)、 大块内存列表(large_free_buckets)和剩余内存列表(rest_buckets)三个列表来分层进行的。 ZendMM向系统进行的内存申请,并不是有需要时向系统即时申请,而是由ZendMM的最底层(heap层)先向系统申请一大块的内存,通过对上面三种列表的填充,建立一个类似于内存池的管理机制。 在程序运行需要使用内存的时候,ZendMM会在内存池中分配相应的内存供使用。这样做的好处是避免了PHP向系统频繁的内存申请操作

PHP对内存的分配,是结合PHP的用途来设计的,PHP一般用于web应用程序的数据支持,单个脚本的运行周期一般比较短(最多达到秒级),内存大块整块的申请,自主进行小块的分配, 没有进行比较复杂的不相临地址的空闲内存合并,而是集中再次向系统请求。 这样做的好处就是运行速度会更快,缺点是随着程序的运行时间的变长,内存的使用情况会“越来越多”(PHP5.2及更早版本)。 所以PHP5.3之前的版本并不适合做为守护进程长期运行。

https://www.cnblogs.com/phpworld/p/5916560.html

PHP从下到上是一个4层体系:

Zend引擎:Zend整体用纯C实现,是PHP的内核部分,它将PHP代码翻译(词法、语法解析等一系列编译过程)为可执行opcode的处理并实现相应的处理方法、实现了基本的数据结构(如hashtable、oo)、内存分配及管理、提供了相应的api方法供外部调用,是一切的核心,所有的外围功能均围绕Zend实现。

Extensions:围绕着Zend引擎,extensions通过组件式的方式提供各种基础服务,我们常见的各种内置函数(如array系列)、标准库等都是通过extension来实现,用户也可以根据需要实现自己的extension以达到功能扩展、性能优化等目的(如贴吧正在使用的PHP中间层、富文本解析就是extension的典型应用)。

Sapi:Sapi全称是Server Application Programming Interface,也就是服务端应用编程接口,Sapi通过一系列钩子函数,使得PHP可以和外围交互数据,这是PHP非常优雅和成功的一个设计,通过sapi成功的将PHP本身和上层应用解耦隔离,PHP可以不再考虑如何针对不同应用进行兼容,而应用本身也可以针对自己的特点实现不同的处理方式。

上层应用:这就是我们平时编写的PHP程序,通过不同的sapi方式得到各种各样的应用模式,如通过webserver实现web应用、在命令行下以脚本方式运行等等。

如果PHP是一辆车,那么车的框架就是PHP本身,Zend是车的引擎(发动机),Ext下面的各种组件就是车的轮子,Sapi可以看做是公路,车可以跑在不同类型的公路上,而一次PHP程序的执行就是汽车跑在公路上。因此,我们需要:性能优异的引擎+合适的车轮+正确的跑道。

PHP53的 gc 改进

http://www.cnblogs.com/leoo2sk/archive/2011/02/27/php-gc.html

是因为一个zval在一个时刻只能表示一种类型的变量。可以看到_zvalue_value中只有5个字段,但是PHP中算上NULL有8种数据类型,那么PHP内部是如何用5个字段表示8种类型呢?这算是PHP设计比较巧妙的一个地方,它通过复用字段达到了减少字段的目的。例如,在PHP内部布尔型、整型及资源(只要存储资源的标识符即可)都是通过lval字段存储的;dval用于存储浮点型;str存储字符串;ht存储数组(注意PHP中的数组其实是哈希表);而obj存储对象类型;如果所有字段全部置为0或NULL则表示PHP中的NULL,这样就达到了用5个字段存储8种类型的值。

在PHP只用于做动态页面脚本时,这种泄露也许不是很要紧,因为动态页面脚本的生命周期很短,PHP会保证当脚本执行完毕后,释放其所有资源。但是PHP发展到目前已经不仅仅用作动态页面脚本这么简单,如果将PHP用在生命周期较长的场景中,例如自动化测试脚本或deamon进程,那么经过多次循环后积累下来的内存泄露可能就会很严重。这并不是我在耸人听闻,我曾经实习过的一个公司就通过PHP写的deamon进程来与数据存储服务器交互。

PHP5.3中的垃圾回收算法——Concurrent Cycle Collection in Reference Counted Systems

首先PHP会分配一个固定大小的“根缓冲区”,这个缓冲区用于存放固定数量的zval,这个数量默认是10,000,如果需要修改则需要修改源代码Zend/zend_gc.c中的常量GC_ROOT_BUFFER_MAX_ENTRIES然后重新编译。

由上文我们可以知道,一个zval如果有引用,要么被全局符号表中的符号引用,要么被其它表示复杂类型的zval中的符号引用。因此在zval中存在一些可能根(root)。这里我们暂且不讨论PHP是如何发现这些可能根的,这是个很复杂的问题,总之PHP有办法发现这些可能根zval并将它们投入根缓冲区。

当根缓冲区满额时,PHP就会执行垃圾回收,此回收算法如下:

1、对每个根缓冲区中的根zval按照深度优先遍历算法遍历所有能遍历到的zval,并将每个zval的refcount减1,同时为了避免对同一zval多次减1(因为可能不同的根能遍历到同一个zval),每次对某个zval减1后就对其标记为“已减”。

2、再次对每个缓冲区中的根zval深度优先遍历,如果某个zval的refcount不为0,则对其加1,否则保持其为0。

3、清空根缓冲区中的所有根(注意是把这些zval从缓冲区中清除而不是销毁它们),然后销毁所有refcount为0的zval,并收回其内存。

如果不能完全理解也没有关系,只需记住PHP5.3的垃圾回收算法有以下几点特性:

1、并不是每次refcount减少时都进入回收周期,只有根缓冲区满额后在开始垃圾回收。

2、可以解决循环引用问题。

3、可以总将内存泄露保持在一个阈值以下。

PHP cli 的交互模式

php -a

posted @ 2018-09-10 23:40  guoguoqingzhe  阅读(137)  评论(0编辑  收藏  举报