每天一道LeetCode--119.Pascal's Triangle II(杨辉三角)
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
public class Solution { public List<Integer> getRow(int rowIndex) { if(rowIndex<0){ return null; } List<List<Integer>> list=new ArrayList<>(); if(rowIndex>=0){ List<Integer> l=new ArrayList<>(); l.add(1); list.add(l); } if(rowIndex>=1){ List<Integer> l=new ArrayList<>(); l.add(1); l.add(1); list.add(l); } if(rowIndex>=2){ for(int i=2;i<=rowIndex;i++){ List<Integer>l=new ArrayList<>(); List<Integer>prev=list.get(i-1); l.add(1); for(int j=1;j<=i-1;j++){ l.add(prev.get(j-1)+prev.get(j)); } l.add(1); list.add(l); } } return list.get(rowIndex); } }
Others' Solution
public List<Integer> getRow(int rowIndex) { List<Integer> list = new ArrayList<Integer>(); if (rowIndex < 0) return list; for (int i = 0; i < rowIndex + 1; i++) { list.add(0, 1); for (int j = 1; j < list.size() - 1; j++) { list.set(j, list.get(j) + list.get(j + 1)); } } return list; }