每天一道LeetCode--119.Pascal's Triangle II(杨辉三角)

Given an index k, return the kth row of the Pascal's triangle.

For example, given k = 3,
Return [1,3,3,1].

Note:
Could you optimize your algorithm to use only O(k) extra space?

public class Solution {
    public List<Integer> getRow(int rowIndex) {
        if(rowIndex<0){
            return null;
        }
         List<List<Integer>> list=new ArrayList<>();
        if(rowIndex>=0){
            List<Integer> l=new ArrayList<>();
            l.add(1);
           list.add(l);
        }
        if(rowIndex>=1){
            List<Integer> l=new ArrayList<>();
            l.add(1);
            l.add(1);
            list.add(l);
        }
       
        if(rowIndex>=2){
            for(int i=2;i<=rowIndex;i++){
                List<Integer>l=new ArrayList<>();
                List<Integer>prev=list.get(i-1);
                l.add(1);
                for(int j=1;j<=i-1;j++){
                    l.add(prev.get(j-1)+prev.get(j));
                }
                l.add(1);
                list.add(l);
            }
        }
        return list.get(rowIndex);
    }
}

 

Others' Solution

 

 public List<Integer> getRow(int rowIndex) {
            List<Integer> list = new ArrayList<Integer>();
            if (rowIndex < 0)
                return list;

            for (int i = 0; i < rowIndex + 1; i++) {
                list.add(0, 1);
                for (int j = 1; j < list.size() - 1; j++) {
                    list.set(j, list.get(j) + list.get(j + 1));
                }
            }
            return list;
        }

 

posted @ 2016-11-16 10:02  破玉  阅读(153)  评论(0编辑  收藏  举报