spark+hcatalog操作hive表及其数据
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | package iie.hadoop.hcatalog.spark; import iie.udps.common.hcatalog.SerHCatInputFormat; import iie.udps.common.hcatalog.SerHCatOutputFormat; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.UUID; import org.apache.hive.hcatalog.common.HCatUtil; import org.apache.hive.hcatalog.data.DefaultHCatRecord; import org.apache.hive.hcatalog.data.HCatRecord; import org.apache.hive.hcatalog.data.schema.HCatSchema; import org.apache.spark.Accumulator; import org.apache.spark.SerializableWritable; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.conf.HiveConf; import org.apache.hadoop.hive.metastore.HiveMetaStoreClient; import org.apache.hadoop.hive.metastore.api.FieldSchema; import org.apache.hadoop.hive.metastore.api.MetaException; import org.apache.hadoop.hive.metastore.api.SerDeInfo; import org.apache.hadoop.hive.metastore.api.StorageDescriptor; import org.apache.hadoop.hive.metastore.api.Table; import org.apache.hadoop.hive.ql.io.RCFileInputFormat; import org.apache.hadoop.hive.ql.io.RCFileOutputFormat; import org.apache.hadoop.hive.serde.serdeConstants; //import org.apache.hadoop.hive.serde2.typeinfo.PrimitiveTypeInfo; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hive.hcatalog.mapreduce.OutputJobInfo; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.broadcast.Broadcast; import org.apache.thrift.TException; import scala.Tuple2; /** * spark+hcatalog 实现表的复制功能, 并将原表一列数据变成大写存到新表 ; create table test(name String,age * int); 执行命令:spark-submit --master yarn-cluster --class * iie.hadoop.hcatalog.spark.LowerUpperCaseConvert /home/xdf/test.jar -c * /user/xdf/stdin.xml * * @author xiaodongfang * */ public class LowerUpperCaseConvert { private static Accumulator<Integer> inputDataCount; private static Accumulator<Integer> outputDataCount; @SuppressWarnings ( "rawtypes" ) public static void main(String[] args) throws Exception { if (args.length < 2 ) { System.err.println( "Usage: <-c> <stdin.xml>" ); System.exit( 1 ); } String stdinXml = args[ 1 ]; String userName = null ; String jobinstanceid = null ; String operatorName = null ; String dbName = null ; String inputTabName = null ; String operFieldName = null ; int fieldCount = 0 ; // 读取stdin.xml文件 Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); FSDataInputStream dis = fs.open( new Path(stdinXml)); InputStreamReader isr = new InputStreamReader(dis, "utf-8" ); BufferedReader read = new BufferedReader(isr); String tempString = "" ; String xmlParams = "" ; while ((tempString = read.readLine()) != null ) { xmlParams += "\n" + tempString; } read.close(); xmlParams = xmlParams.substring( 1 ); // 获取xml文件中的参数值 OperatorParamXml operXML = new OperatorParamXml(); List<Map> list = operXML.parseStdinXml(xmlParams); userName = list.get( 0 ).get( "userName" ).toString(); dbName = list.get( 0 ).get( "dbName" ).toString(); inputTabName = list.get( 0 ).get( "inputTabName" ).toString(); operatorName = list.get( 0 ).get( "operatorName" ).toString(); jobinstanceid = list.get( 0 ).get( "jobinstanceid" ).toString(); fieldCount = Integer.parseInt(list.get( 0 ).get( "fieldCount" ).toString()); // 设置输出表字段名及类型 ArrayList<String> fieldName = new ArrayList<String>(); ArrayList<String> fieldType = new ArrayList<String>(); for ( int i = 1 ; i <= fieldCount; i++) { fieldName.add(list.get( 0 ).get( "fieldName" + i).toString()); fieldType.add(list.get( 0 ).get( "fieldType" + i).toString()); } String[] fieldNames = new String[fieldCount]; String[] fieldTypes = new String[fieldCount]; // 设置输出表的名字 String outputTable = "tmp_" + UUID.randomUUID().toString().replace( '-' , '_' ); // 获取表字段名字和类型 for ( int j = 0 ; j < fieldCount; j++) { fieldNames[j] = fieldName.get(j); fieldTypes[j] = fieldType.get(j); System.out.println( "====fieldName=====" + fieldNames[j]); System.out.println( "====fieldType=====" + fieldTypes[j]); } System.out.println( "====fieldCount=====" + fieldCount); // 创建hive表 HCatSchema schema = getHCatSchema(dbName, inputTabName); createTable(dbName, outputTable, schema); // 将输入表字段数据转换为大写,写入输出表文件中 JavaSparkContext jsc = new JavaSparkContext( new SparkConf().setAppName( "LowerUpperCaseConvert" )); inputDataCount = jsc.accumulator( 0 ); outputDataCount = jsc.accumulator( 0 ); // 要操作的字段名称及字段序号 operFieldName = fieldNames[ 0 ]; System.out.println( "====operFieldName======" + operFieldName); int position = schema.getPosition(operFieldName); JavaRDD<SerializableWritable<HCatRecord>> rdd1 = LowerUpperCaseConvert .lowerUpperCaseConvert(jsc, dbName, inputTabName, position); LowerUpperCaseConvert.storeToTable(rdd1, dbName, outputTable); jsc.stop(); // 设置输出xml文件参数 List<Map> listOut = new ArrayList<Map>(); Map<String, String> mapOut = new HashMap<String, String>(); mapOut.put( "jobinstanceid" , jobinstanceid); mapOut.put( "dbName" , dbName); mapOut.put( "outputTable" , outputTable); mapOut.put( "inputDataCount" , inputDataCount.value().toString()); mapOut.put( "outputDataCount" , outputDataCount.value().toString()); String operFieldType = fieldTypes[ 0 ]; // 要操作的字段类型 if (operFieldType.equalsIgnoreCase( "String" )) { // 创建正常输出xml文件 listOut.add(mapOut); String hdfsOutXml = "/user/" + userName + "/optasks/" + jobinstanceid + "/" + operatorName + "/out" + "/stdout.xml" ; operXML.genStdoutXml(hdfsOutXml, listOut); } else { // 创建错误输出xml文件 String errorMessage = "fieldType is not string!!!" ; String errotCode = "80001" ; mapOut.put( "errorMessage" , errorMessage); mapOut.put( "errotCode" , errotCode); listOut.add(mapOut); String hdfsErrorXml = "/user/" + userName + "/optasks/" + jobinstanceid + "/" + operatorName + "/out" + "/stderr.xml" ; operXML.genStderrXml(hdfsErrorXml, listOut); } System.exit( 0 ); } @SuppressWarnings ( "rawtypes" ) public static JavaRDD<SerializableWritable<HCatRecord>> lowerUpperCaseConvert( JavaSparkContext jsc, String dbName, String inputTabName, int position) throws IOException { Configuration inputConf = new Configuration(); SerHCatInputFormat.setInput(inputConf, dbName, inputTabName); JavaPairRDD<WritableComparable, SerializableWritable> rdd = jsc .newAPIHadoopRDD(inputConf, SerHCatInputFormat. class , WritableComparable. class , SerializableWritable. class ); final Broadcast<Integer> posBc = jsc.broadcast(position); // 获取表记录集 JavaRDD<SerializableWritable<HCatRecord>> result = null ; final Accumulator<Integer> output = jsc.accumulator( 0 ); final Accumulator<Integer> input = jsc.accumulator( 0 ); result = rdd .map( new Function<Tuple2<WritableComparable, SerializableWritable>, SerializableWritable<HCatRecord>>() { private static final long serialVersionUID = -2362812254158054659L; private final int postion = posBc.getValue().intValue(); public SerializableWritable<HCatRecord> call( Tuple2<WritableComparable, SerializableWritable> v) throws Exception { HCatRecord record = (HCatRecord) v._2.value(); // +1 inport input.add( 1 ); List<Object> newRecord = new ArrayList<Object>(record .size()); for ( int i = 0 ; i < record.size(); ++i) { newRecord.add(record.get(i)); } /* * if (ok) +1 outport1 else +1 errport */ newRecord.set(postion, newRecord.get(postion) .toString().toUpperCase()); output.add( 1 ); return new SerializableWritable<HCatRecord>( new DefaultHCatRecord(newRecord)); // 返回记录 } }); inputDataCount = input; outputDataCount = output; return result; } @SuppressWarnings ( "rawtypes" ) public static void storeToTable( JavaRDD<SerializableWritable<HCatRecord>> rdd, String dbName, String tblName) { Job outputJob = null ; try { outputJob = Job.getInstance(); outputJob.setJobName( "lowerUpperCaseConvert" ); outputJob.setOutputFormatClass(SerHCatOutputFormat. class ); outputJob.setOutputKeyClass(WritableComparable. class ); outputJob.setOutputValueClass(SerializableWritable. class ); SerHCatOutputFormat.setOutput(outputJob, OutputJobInfo.create(dbName, tblName, null )); HCatSchema schema = SerHCatOutputFormat.getTableSchema(outputJob .getConfiguration()); SerHCatOutputFormat.setSchema(outputJob, schema); } catch (IOException e) { e.printStackTrace(); } // 将RDD存储到目标表中 rdd.mapToPair( new PairFunction<SerializableWritable<HCatRecord>, WritableComparable, SerializableWritable<HCatRecord>>() { private static final long serialVersionUID = -4658431554556766962L; @Override public Tuple2<WritableComparable, SerializableWritable<HCatRecord>> call( SerializableWritable<HCatRecord> record) throws Exception { return new Tuple2<WritableComparable, SerializableWritable<HCatRecord>>( NullWritable.get(), record); } }).saveAsNewAPIHadoopDataset(outputJob.getConfiguration()); } // 创建表结构 public static void createTable(String dbName, String tblName, HCatSchema schema) { HiveMetaStoreClient client = null ; try { HiveConf hiveConf = HCatUtil.getHiveConf( new Configuration()); try { client = HCatUtil.getHiveClient(hiveConf); } catch (MetaException e) { // TODO Auto-generated catch block e.printStackTrace(); } } catch (IOException e) { e.printStackTrace(); } try { if (client.tableExists(dbName, tblName)) { client.dropTable(dbName, tblName); } } catch (TException e) { e.printStackTrace(); } List<FieldSchema> fields = HCatUtil.getFieldSchemaList(schema .getFields()); System.out.println(fields); Table table = new Table(); table.setDbName(dbName); table.setTableName(tblName); StorageDescriptor sd = new StorageDescriptor(); sd.setCols(fields); table.setSd(sd); sd.setInputFormat(RCFileInputFormat. class .getName()); sd.setOutputFormat(RCFileOutputFormat. class .getName()); sd.setParameters( new HashMap<String, String>()); sd.setSerdeInfo( new SerDeInfo()); sd.getSerdeInfo().setName(table.getTableName()); sd.getSerdeInfo().setParameters( new HashMap<String, String>()); sd.getSerdeInfo().getParameters() .put(serdeConstants.SERIALIZATION_FORMAT, "1" ); sd.getSerdeInfo().setSerializationLib( org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe. class .getName()); Map<String, String> tableParams = new HashMap<String, String>(); table.setParameters(tableParams); try { client.createTable(table); System.out.println( "Create table successfully!" ); } catch (TException e) { e.printStackTrace(); return ; } finally { client.close(); } } // 获得HCatSchema public static HCatSchema getHCatSchema(String dbName, String tblName) { Job outputJob = null ; HCatSchema schema = null ; try { outputJob = Job.getInstance(); outputJob.setJobName( "getHCatSchema" ); outputJob.setOutputFormatClass(SerHCatOutputFormat. class ); outputJob.setOutputKeyClass(WritableComparable. class ); outputJob.setOutputValueClass(SerializableWritable. class ); SerHCatOutputFormat.setOutput(outputJob, OutputJobInfo.create(dbName, tblName, null )); schema = SerHCatOutputFormat.getTableSchema(outputJob .getConfiguration()); } catch (IOException e) { e.printStackTrace(); } return schema; } } |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?