spark mllib k-means算法实现

package iie.udps.example.spark.mllib;

import java.util.regex.Pattern;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.clustering.KMeans;
import org.apache.spark.mllib.clustering.KMeansModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;

/**
 * Example using MLLib KMeans from Java.
 * 
 * spark-submit --class iie.udps.example.spark.mllib.JavaKMeans --master
 * yarn-cluster --num-executors 15 --driver-memory 512m --executor-memory 2g
 * --executor-cores 2 /home/xdf/test2.jar /user/xdf/Example.txt 10 2
 */
public final class JavaKMeans {

	@SuppressWarnings("serial")
	private static class ParsePoint implements Function<String, Vector> {
		private static final Pattern SPACE = Pattern.compile(",");

		@Override
		public Vector call(String line) {
			String[] tok = SPACE.split(line);
			// 统一数据维度为3,此处没有考虑其他异常数据情况
			if (tok.length < 3) {
				tok = SPACE.split(line + ",0");
				for (int i = tok.length; i < 3; i++) {
					tok[i] = "0";
				}
			}
			if (tok.length > 3) {
				tok = SPACE.split("0,0,0");
			}
			double[] point = new double[tok.length];
			for (int i = 0; i < tok.length; ++i) {
				point[i] = Double.parseDouble(tok[i]);
			}
			return Vectors.dense(point);
		}

	}

	public static void main(String[] args) {
		if (args.length < 3) {
			System.err
					.println("Usage: JavaKMeans <input_file> <k> <max_iterations> [<runs>]");
			System.exit(1);
		}
		String inputFile = args[0]; // 要读取的文件
		int k = Integer.parseInt(args[1]); // 聚类个数
		int iterations = Integer.parseInt(args[2]); // 迭代次数
		int runs = 1; // 运行算法次数

		if (args.length >= 4) {
			runs = Integer.parseInt(args[3]);
		}
		SparkConf sparkConf = new SparkConf().setAppName("JavaKMeans");
		// sparkConf.set("spark.default.parallelism", "4");
		// sparkConf.set("spark.akka.frameSize", "1024");
		System.setProperty(
				"dfs.client.block.write.replace-datanode-on-failure.enable",
				"true");
		System.setProperty(
				"dfs.client.block.write.replace-datanode-on-failure.policy",
				"never");
		// sparkConf.set(
		// "dfs.client.block.write.replace-datanode-on-failure.enable",
		// "true");
		// sparkConf.set(
		// "dfs.client.block.write.replace-datanode-on-failure.policy",
		// "never");
		JavaSparkContext sc = new JavaSparkContext(sparkConf);
		// 指定文件分片数
		JavaRDD<String> lines = sc.textFile(inputFile,2400);// ,1264 , 1872,2400
		JavaRDD<Vector> points = lines.map(new ParsePoint());

		KMeansModel model = KMeans.train(points.rdd(), k, iterations, runs,
				KMeans.K_MEANS_PARALLEL());

//		 System.out.println("Vector 98, 345, 90 belongs to clustering :"
//		 + model.predict(Vectors.dense(98, 345, 90)));
//		 System.out.println("Vector 748, 965, 202 belongs to clustering :"
//		 + model.predict(Vectors.dense(748, 965, 202)));
//		 System.out.println("Vector 310, 554, 218 belongs to clustering :"
//		 + model.predict(Vectors.dense(310, 554, 218)));

		System.out.println("Cluster centers:");
		for (Vector center : model.clusterCenters()) {
			System.out.println(" " + center);

		}
		double cost = model.computeCost(points.rdd());
		System.out.println("Cost: " + cost);

		sc.stop();
	}
}

  

posted on 2015-02-09 11:39  XIAO的博客  阅读(1031)  评论(0编辑  收藏  举报

导航