图的最短路径问题 详细分解版
图的最短路径问题 详细分解版
1.图的最短路径问题分类
2.单源最短路问题
2.1边权值都是正数情况
2.1.1 朴素Dijstra算法
算法思想:每次从未被确定最短距离的结点中找出距离起点最小值的结点,加入集合s中,并用该结点更新其他未被确定最短路径值得结点路径。直到最终全部节点的最短路径值都计算出,此时集合s为所有结点集合。
#include<bits/stdc++.h>
using namespace std;
const int N = 510;
int g[N][N];//稠密图,邻接矩阵存储
int st[N];//是否被访问过,即是否在s集合中
int dist[N];//记录每个点到起点的距离
int n,m;
//返回编号为n的结点到1号结点的最短路径
int dijstra(){
memset(dist,0x3f,sizeof dist);//将距离初始化为无穷大
dist[1]=0;//1号结点距离初始化为0
for(int i=0;i<n;i++){//n轮循环,每次找出一个结点,加入s集合,并用其更新其他节点dist数组。必须有n轮循环,因为要更新dist数组
int t=-1;
for(int j=1;j<=n;j++){//循环找出当前距离起始的1号结点最近,且未加入s的结点
if(!st[j]&&(t==-1||dist[j]<dist[t])){
t=j;
}
}
st[t]=true;//将该结点加入s数组
for(int j=1;j<=n;j++){//循环更新其他节点距离
if(!st[j]){
dist[j]=min(dist[j],dist[t]+g[t][j]);
}
}
}
if(dist[n]==0x3f3f3f3f) return -1;//如果dist[n]未被更新,说明其不可达
return dist[n];
}
int main(){
memset(g,0x3f,sizeof g);//初始化结点间的距离为无穷大
cin>>n>>m;//输入数据包含n个结点,m条边
int a,b,c;
while(m--){
cin>>a>>b>>c;//输入m条边,输入数据存在自环和重边,取最小值即可
g[a][b]=min(g[a][b],c);
}
cout<<dijstra()<<endl;
return 0;
}
算法分析:算法包含两轮循环,时间复杂度为\(O(n^2)\)
2.1.2 堆优化的Dijstra算法
优化思想:朴素Dijstra算法每次都要找出当前距离起点最近的结点,加入集合s中。我们可以使用堆来维护结点距离起点的距离,省去一重循环。
//稀疏图的dijstra
#include<bits/stdc++.h>
using namespace std;
const int N = 1.5e5+10;
int e[N],ne[N],w[N],h[N],idx;//稀疏图,采用邻接表存储
int n,m;//n个结点,m条边
int dist[N];//距离数组
bool st[N];//是否访问过,即s集合标记
typedef pair<int, int> PII;//使用堆自动排序,pair的first为距离,second为编号
void add(int a,int b,int c){//添加结点a->b的边,权值为c
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
int dijstra(){
memset(dist,0x3f,sizeof dist);
dist[1]=0;
priority_queue<PII,vector<PII>,greater<PII>> q;//声明小根堆
q.push({0,1});//1号结点加入队列
while(!q.empty()){
PII t=q.top();
q.pop();
int distance=t.first,x=t.second;
if(st[x]) continue;//距离已经确定,跳过
st[x]=true;
for(int i=h[x];i!=-1;i=ne[i]){
int j=e[i];
if(dist[x]+w[i]<dist[j]){
dist[j]=dist[x]+w[i];
q.push({dist[j],j});
}
}
}
if(dist[n]==0x3f3f3f3f) return -1;
return dist[n];
}
int main(){
cin>>n>>m;
int a,b,c;
memset(h,-1,sizeof h);
while(m--){
cin>>a>>b>>c;
add(a,b,c);
}
cout<<dijstra()<<endl;
return 0;
}
算法分析:
时间复杂度:每次找到最小距离的点沿着边更新其他的点,若dist[j] > distance + w[i]
,表示可以更新dist[j]
,更新后再把j
点和对应的距离放入小根堆中。由于点的个数是n
,边的个数是m
,在极限情况下(稠密图\(m=\frac{n*n(n-1)}{2}\))最多可以更新m
回,每一回最多可以更新\(n^2\)个点(严格上是n - 1
个点),有m
回,因此最多可以把\(n^2\)个点放入到小根堆中,因此每一次更新小根堆排序的情况是\(O(log(n^2))\),一共最多m
次更新,因此总的时间复杂度上限是\(O(mlog((n^2)))=O(2mlogn)=O(mlogn)\)
疑问:为什么会存在距离已经确定了点在堆中?
因为可能上次新加入集合s的元素更新了a的距离值,但是距离值很大,直到a的距离值确定了才pop出来。
2.2边权值存在负数的情况
2.2.1 Bellman-ford算法
算法思想:如果图中存在n个点,那么经过n-1次循环,每轮循环时把每条边都进行松弛操作,若在 n-1 次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。
松弛操作:
for n次
for 所有边 a,b,w (松弛操作)
dist[b] = min(dist[b],back[a] + w)
注意:back[] 数组是上一次迭代后 dist[] 数组的备份,由于是每个点同时向外出发,因此需要对 dist[] 数组进行备份,若不进行备份会因此发生串联效应,影响到下一个点。
在下面代码中,是否能到达n号点的判断中需要进行if(dist[n] > INF/2)
判断,而并非是if(dist[n] == INF)
判断,原因是INF
是一个确定的值,并非真正的无穷大,会随着其他数值而受到影响,dist[n]
大于某个与INF
相同数量级的数即可。
bellman - ford算法擅长解决有边数限制的最短路问题。
//本代码是解决有边数限制的最短路径问题的代码
#include<bits/stdc++.h>
using namespace std;
const int N = 10010;
int n,m,k;
int dist[510],backup[510];
struct{
int a,b,w;
}edges[N];//a->b有一条边,权重为w
int bellman_ford(){
memset(dist,0x3f,sizeof dist);
dist[1]=0;
for(int i=0;i<k;i++){//最多k条边,总共最对经过k条边
memcpy(backup,dist,sizeof dist);
for(int j=0;j<m;j++){//对所有的m条边执行松弛操作
int a=edges[j].a,b=edges[j].b,w=edges[j].w;
if(backup[a]+w<dist[b]){
dist[b]=backup[a]+w;
}
}
}
if(dist[n]>0x3f3f3f3f/2) return -0x3f3f3f3f;
else return dist[n];
}
int main(){
cin>>n>>m>>k;
int a,b,w;
for(int i=0;i<m;i++){
cin>>a>>b>>w;
edges[i]={a,b,w};
}
int ans=bellman_ford();
if(ans==-0x3f3f3f3f){
cout<<"impossible"<<endl;
}else{
cout<<ans<<endl;
}
return 0;
}
算法分析:
时间复杂度:\(O(nm)\),其中n为点数,m为边数
2.2.2 SPFA算法
算法思想:优化了Bellman-ford算法。在Bellman-ford算法中,dist[b] = min(dist[b],back[a] + w)
,如果a的距离没有更新,那么我的循环其实做了很多没用的操作。所以我们希望当a的距离更新时 ,再去用a更新其他结点的距离值。算法思想类似于Dijstra算法。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
int e[N],w[N],h[N],ne[N],idx;
int n,m;
int st[N];//记录结点是否在队列中,即是否发生更新
int dist[N];
void add(int a,int b,int c){
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
int spfa(){
memset(dist,0x3f,sizeof dist);
dist[1]=0;
queue<int> q;
q.push(1);
while(!q.empty()){
int t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i]){
int j=e[i];
if(dist[j]>dist[t]+w[i]){//松弛操作
dist[j]=dist[t]+w[i];
if(!st[j]){//结点发生距离更新,所以可以用该结点去更新其他结点
q.push(j);
st[j]=true;
}
}
}
}
if(dist[n]==0x3f3f3f3f) return -0x3f3f3f3f;
return dist[n];
}
int main(){
memset(h,-1,sizeof h);
cin>>n>>m;
int a,b,c;
while(m--){
cin>>a>>b>>c;
add(a,b,c);
}
int ans=spfa();
if(ans==-0x3f3f3f3f) cout<<"impossible"<<endl;
else cout<<ans<<endl;
return 0;
}
算法分析:
Bellman_ford算法里最后return -1
的判断条件写的是dist[n]>0x3f3f3f3f/2;
而spfa算法写的是dist[n]==0x3f3f3f3f;
其原因在于Bellman_ford算法会遍历所有的边,因此不管是不是和源点连通的边它都会得到更新;但是SPFA算法不一样,它相当于采用了BFS,因此遍历到的结点都是与源点连通的,因此如果你要求的n和源点不连通,它不会得到更新,还是保持的0x3f3f3f3f。
Bellman_ford算法可以存在负权回路,是因为其循环的次数是有限制的因此最终不会发生死循环;但是SPFA算法不可以,由于用了队列来存储,只要发生了更新就会不断的入队,因此假如有负权回路请你不要用SPFA否则会死循环。
由于SPFA算法是由Bellman_ford算法优化而来,在最坏的情况下时间复杂度和它一样即时间复杂度为 \(O(nm)\) ,假如题目时间允许可以直接用SPFA算法去解Dijkstra算法的题目。
求负环一般使用SPFA算法,方法是用一个cnt数组记录每个点到源点的边数,一个点被更新一次就+1,一旦有点的边数达到了n那就证明存在了负环。
3.多源汇最短路径问题
Floyd算法
算法思想:三重循环,动态规划思想。\(dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j])\)
//此算法求x到y的最短距离,如果不存在,输出impossible
#include<bits/stdc++.h>
using namespace std;
const int N = 510,INF=1e9;
int g[N][N];//g[i][j]记录i->j的最短路径
int n,m,Q;
void floyd(){
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
}
}
}
}
int main(){
cin>>n>>m>>Q;
for(int i=1;i<=n;i++){//初始化数组
for(int j=1;j<=n;j++){
if(i==j) g[i][j]=0;
else g[i][j]=INF;
}
}
while(m--){//输入m条边
int a,b,c;
cin>>a>>b>>c;
g[a][b]=min(g[a][b],c);
}
floyd();
while(Q--){//Q次查询
int a,b;
cin>>a>>b;
if(g[a][b]>INF/2) cout<<"impossible"<<endl;
else cout<<g[a][b]<<endl;
}
return 0;
}
算法分析:三重循环,floyd算法时间复杂度为\(O(n^3)\)。Floyd算法的三重循环,必须先遍历k,再遍历i和j。i和j遍历的顺序可以交换。Floyd算法也可能存在更新了距离,但是仍然不可达的情况,所以判断条件为g[a][b]>INF/2
,只要和INF是一个数量级就说明不可达。