正则化的L1范数和L2范数

范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title

首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度

主要的几种类型包括:1)0-1损失函数  2)平方损失函数   3)绝对损失函数  4) 对数损失函数

0-1损失函数:

         

平方损失函数:

         

绝对损失函数:

           

对数损失函数:

           

由此延伸出对应的概念:

 

其次介绍一般的范数表示:

范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小

向量的范数:

1-范数,计算方式为向量所有元素的绝对值之和。 


2-范数,计算方式跟欧式距离的方式一致。 

 

矩阵的范数:

假设矩阵的大小为mn,即m行n列。

1-范数,又名列和范数。顾名思义,即矩阵列向量中绝对值之和的最大值。 


2-范数,又名谱范数,计算方法为ATA矩阵的最大特征值的开平方。 
其中λ1的最大特征值。
 

 

正则化也就是经验风险项加上正则化项,从而达到对模型选择的目的,以做到从模型拟合效果(经验风险)和复杂度(正则化项)来选去最优模型。

正则化的一般表示形式为:

          

其中第一项表示经验风险,第二项表示正则化项

正则化可以表示为多个形式,以回归方程为例,由于其损失函数为平方损失,正则化表示为参数向量的L2范数:

        

在这里||w||表示参数向量w的L2范数。

正则化也可以表示为参数向量的L1范数

         

其中||w||表示参数向量w的L1范数

 

以上部分的经验风险表现越小模型越复杂,这时候正则化项为表现较大,所以我们主要还是筛选经验风险和正则化项同时较小的模型。

注:

L1范数因为表现出比L0范数更好的求解性而应用较为广泛

L2范数表现为向量各元素平方和求平方根,我们让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于0。

posted @ 2017-11-23 21:48  小丑_jk  阅读(1877)  评论(0编辑  收藏  举报