softmax回归简单实现

Fashion-MNIST.py

from mxnet.gluon import data as gdata
import sys
import time
from d2lzh import *



mnist_train = gdata.vision.FashionMNIST(train=True)
mnist_test = gdata.vision.FashionMNIST(train=False)

# print(len(mnist_train))
# print(len(mnist_test))

# feature,label = mnist_train[0]
# print(feature)
# print(label)

# X,y = mnist_train[0:9]
# d2l.show_fashion_mnist(X,d2l.get_fashion_mnist_labels(y))

num_inputs = 784
num_outputs = 10

W = nd.random.normal(scale=0.01, shape=(num_inputs, num_outputs))
b = nd.zeros(num_outputs)

W.attach_grad()
b.attach_grad()

batch_size = 256
transformer = gdata.vision.transforms.ToTensor()

#学习率
lr = 0.03
#迭代周期
num_epochs = 3

if sys.platform.startswith('win'):
    num_workers=0
else:
    num_workers = 4

train_iter = gdata.DataLoader(mnist_train.transform_first(transformer),
                              batch_size, shuffle=True,
                              num_workers=num_workers)
test_iter = gdata.DataLoader(mnist_test.transform_first(transformer),
                             batch_size, shuffle=False,
                             num_workers=num_workers)

def net(X):
    return softmax(nd.dot(X.reshape((-1,num_inputs)),W)+b)

#交叉熵损失函数
def cross_entropy(y_hat,y):
    return -nd.pick(y_hat,y).log()

# start = time.time()
# for X,y in train_iter:
#     continue
# print(time.time()-start)

# print(evaluate_accuracy(test_iter,net))



train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size,[W, b], lr)

d2lzh.py

from IPython import display
from matplotlib import pyplot as plt
from mxnet import autograd,nd
import random
import os

#用矢量图显示
def use_svg_display():
    display.set_matplotlib_formats('svg')

#设置图的尺寸
def set_figsize(figsize=(3.5,2.5)):
    use_svg_display()
    plt.rcParams['figure.figsize'] = figsize

#读取小批量数据
def data_iter(batch_size,features,labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)#样本读取顺序随机
    for i in range(0,num_examples,batch_size):
        #选取从i到i+batch_size-1的元素
        j = nd.array(indices[i:min(i+batch_size,num_examples)])
        #返回第j个元素和标签
        yield features.take(j),labels.take(j)


#线性回归的矢量表达式
def linreg(X,w,b):
    return nd.dot(X,w) + b

#定义损失函数
def squard_loss(y_hat,y):
    return (y_hat-y.reshape(y_hat.shape))**2/2
    
#定义优化算法
'''
小批量随机梯度下降算法。它通过不断迭代模型参数来优
化损失函数。这⾥⾃动求梯度模块计算得来的梯度是⼀个批量样本的梯度和。我们将它除以批量
⼤小来得到平均值。
''' 
def sgd(params,lr,batch_size):
    for param in params:
        param[:] = param - lr * param.grad / batch_size

#绘制
def paint(features,labels):
    set_figsize()
    plt.scatter(features[:,1].asnumpy(),labels.asnumpy(),1)
    plt.show()


'''
Fashion-MNIST中一共包括了10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。
以下函数可以将数值标签转成相应的文本标签。
'''
def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

'''
可以在一行里画出多张图像和对应标签的函数
'''
def show_fashion_mnist(images,labels):
    use_svg_display()
    # 这里的_表示我们忽略(不使用)的变量
    _,figs = plt.subplots(1,len(images),figsize=(12,12))
    for f,img,lbl in zip(figs,images,labels):
        f.imshow(img.reshape((28,28)).asnumpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()


def softmax(X):
    X_exp = X.exp()
    partition = X_exp.sum(axis=1,keepdims=True)
    return X_exp/partition





#求准确率函数
def accuracy(y_hat,y):
    return (y_hat.argmax(axis=1) == y.astype('float32')).mean.asscalar()

def evaluate_accuracy(data_iter,net):
    acc_sum,n=0.0,0
    for X,y in data_iter:
        y = y.astype('float32')
        acc_sum += (net(X).argmax(axis=1) == y).sum().asscalar()
        n += y.size 
    return acc_sum / n

def train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,trainer=None):
    for epoch in range(num_epochs):
        train_l_sum,train_acc_sum,n = 0.0,0.0,0
        for X,y in train_iter:
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat,y).sum()
            l.backward()
            if trainer is None:
                sgd(params,lr,batch_size)
            else:
                trainer.step(batch_size)
            y = y.astype('float32')
            train_l_sum += l.asscalar()
            train_acc_sum += (y_hat.argmax(axis=1) == y).sum().asscalar()
            # print(y_hat)
            # print(y_hat.argmax(axis=1))
            # print((y_hat.argmax(axis=1) == y))
            # os.system("pause")
            n += y.size
        
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

 

posted @ 2020-04-03 07:28  喵小喵~  阅读(507)  评论(0编辑  收藏  举报