平均售价

Table: Prices

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| product_id    | int     |
| start_date    | date    |
| end_date      | date    |
| price         | int     |
+---------------+---------+
(product_id,start_date,end_date) 是 Prices 表的主键。
Prices 表的每一行表示的是某个产品在一段时期内的价格。
每个产品的对应时间段是不会重叠的,这也意味着同一个产品的价格时段不会出现交叉。
 

Table: UnitsSold

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| product_id    | int     |
| purchase_date | date    |
| units         | int     |
+---------------+---------+
UnitsSold 表没有主键,它可能包含重复项。
UnitsSold 表的每一行表示的是每种产品的出售日期,单位和产品 id。
 

编写SQL查询以查找每种产品的平均售价。
average_price 应该四舍五入到小数点后两位。
查询结果格式如下例所示:

Prices table:
+------------+------------+------------+--------+
| product_id | start_date | end_date   | price  |
+------------+------------+------------+--------+
| 1          | 2019-02-17 | 2019-02-28 | 5      |
| 1          | 2019-03-01 | 2019-03-22 | 20     |
| 2          | 2019-02-01 | 2019-02-20 | 15     |
| 2          | 2019-02-21 | 2019-03-31 | 30     |
+------------+------------+------------+--------+
 
UnitsSold table:
+------------+---------------+-------+
| product_id | purchase_date | units |
+------------+---------------+-------+
| 1          | 2019-02-25    | 100   |
| 1          | 2019-03-01    | 15    |
| 2          | 2019-02-10    | 200   |
| 2          | 2019-03-22    | 30    |
+------------+---------------+-------+

Result table:
+------------+---------------+
| product_id | average_price |
+------------+---------------+
| 1          | 6.96          |
| 2          | 16.96         |
+------------+---------------+
平均售价 = 产品总价 / 销售的产品数量。
产品 1 的平均售价 = ((100 * 5)+(15 * 20) )/ 115 = 6.96
产品 2 的平均售价 = ((200 * 15)+(30 * 30) )/ 230 = 16.96
//首先进行链接,找到购买日期在出售日期之内的数据
//通过分组进行数据计算并且保留两位
select product_id,round(sum(price*units)/sum(units),2) average_price from (
select p.product_id,price,units  from Prices p
left join UnitsSold u
on p.product_id = u.product_id
where u.purchase_date >= start_date  and u.purchase_date <= end_date   ) a
group by product_id 

 

posted @ 2023-08-07 18:32  网抑云黑胶SVIP用户  阅读(15)  评论(0编辑  收藏  举报