SQL157 平均播放进度大于60%的视频类别

描述

用户-视频互动表tb_user_video_log 

id uid video_id start_time end_time if_follow if_like if_retweet comment_id
1 101 2001 2021-10-01 10:00:00 2021-10-01 10:00:30 0 1 1 NULL
2 102 2001 2021-10-01 10:00:00 2021-10-01 10:00:21 0 0 1 NULL
3 103 2001 2021-10-01 11:00:50 2021-10-01 11:01:20 0 1 0 1732526
4 102 2002 2021-10-01 11:00:00 2021-10-01 11:00:30 1 0 1 NULL
5 103 2002 2021-10-01 10:59:05 2021-10-01 11:00:05 1 0 1 NULL

(uid-用户ID, video_id-视频ID, start_time-开始观看时间, end_time-结束观看时间, if_follow-是否关注, if_like-是否点赞, if_retweet-是否转发, comment_id-评论ID)

 

短视频信息表tb_video_info

id video_id author tag duration release_time
1 2001 901 影视 30 2021-01-01 07:00:00
2 2002 901 美食 60 2021-01-01 07:00:00
3 2003 902 旅游 90 2021-01-01 07:00:00
(video_id-视频ID, author-创作者ID, tag-类别标签, duration-视频时长, release_time-发布时间)
 
 
问题:计算各类视频的平均播放进度,将进度大于60%的类别输出。
 
  • 播放进度=播放时长÷视频时长*100%,当播放时长大于视频时长时,播放进度均记为100%。
  • 结果保留两位小数,并按播放进度倒序排序。
输出示例
示例数据的输出结果如下:
tag avg_play_progress
影视 90.00%
美食 75.00%
解释:
影视类视频2001被用户101、102、103看过,播放进度分别为:30秒(100%)、21秒(70%)、30秒(100%),平均播放进度为90.00%(保留两位小数);
美食类视频2002被用户102、103看过,播放进度分别为:30秒(50%)、60秒(100%),平均播放进度为75.00%(保留两位小数);
 

示例1

输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    video_id INT NOT NULL COMMENT '视频ID',
    start_time datetime COMMENT '开始观看时间',
    end_time datetime COMMENT '结束观看时间',
    if_follow TINYINT COMMENT '是否关注',
    if_like TINYINT COMMENT '是否点赞',
    if_retweet TINYINT COMMENT '是否转发',
    comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_video_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    video_id INT UNIQUE NOT NULL COMMENT '视频ID',
    author INT NOT NULL COMMENT '创作者ID',
    tag VARCHAR(16) NOT NULL COMMENT '类别标签',
    duration INT NOT NULL COMMENT '视频时长(秒数)',
    release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
  (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
  (102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:21', 0, 0, 1, null),
  (103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:20', 0, 1, 0, 1732526),
  (102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null),
  (103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 1, null);

INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
  (2001, 901, '影视', 30, '2021-01-01 7:00:00'),
  (2002, 901, '美食', 60, '2021-01-01 7:00:00'),
  (2003, 902, '旅游', 90, '2020-01-01 7:00:00');
输出:
影视|90.00%
美食|75.00%

 

 

第一步,先算出每一个的播放进度

 

if(TIMESTAMPDIFF(SECOND,start_time,end_time)/duration > 1,1,
  TIMESTAMPDIFF(SECOND,start_time,end_time)/duration )*100 as avg_play

第二步,连表返回基本数据集

select 
tb2.tag tag,
if(TIMESTAMPDIFF(SECOND,start_time,end_time)/duration > 1,1,
  TIMESTAMPDIFF(SECOND,start_time,end_time)/duration )*100 as avg_play
from tb_user_video_log tb1
left join tb_video_info tb2
on tb1.video_id = tb2.video_id

第三步,分组并过滤数据

select view1.tag tag,concat(round(sum(view1.avg_play)/count(1),2),'%') avg_play_progress
from 
(select 
tb2.tag tag,
if(TIMESTAMPDIFF(SECOND,start_time,end_time)/duration > 1,1,
  TIMESTAMPDIFF(SECOND,start_time,end_time)/duration )*100 as avg_play
from tb_user_video_log tb1
left join tb_video_info tb2
on tb1.video_id = tb2.video_id
) view1
group by view1.tag
having sum(view1.avg_play)/count(1) > 60
order by avg_play_progress desc

 

posted @ 2022-09-09 13:56  网抑云黑胶SVIP用户  阅读(50)  评论(0编辑  收藏  举报