SQL157 平均播放进度大于60%的视频类别
描述
用户-视频互动表tb_user_video_log
id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
1 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:30 | 0 | 1 | 1 | NULL |
2 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:21 | 0 | 0 | 1 | NULL |
3 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:20 | 0 | 1 | 0 | 1732526 |
4 | 102 | 2002 | 2021-10-01 11:00:00 | 2021-10-01 11:00:30 | 1 | 0 | 1 | NULL |
5 | 103 | 2002 | 2021-10-01 10:59:05 | 2021-10-01 11:00:05 | 1 | 0 | 1 | NULL |
(uid-用户ID, video_id-视频ID, start_time-开始观看时间, end_time-结束观看时间, if_follow-是否关注, if_like-是否点赞, if_retweet-是否转发, comment_id-评论ID)
短视频信息表tb_video_info
id | video_id | author | tag | duration | release_time |
1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
3 | 2003 | 902 | 旅游 | 90 | 2021-01-01 07:00:00 |
(video_id-视频ID, author-创作者ID, tag-类别标签, duration-视频时长, release_time-发布时间)
问题:计算各类视频的平均播放进度,将进度大于60%的类别输出。
注:
- 播放进度=播放时长÷视频时长*100%,当播放时长大于视频时长时,播放进度均记为100%。
- 结果保留两位小数,并按播放进度倒序排序。
输出示例:
示例数据的输出结果如下:tag | avg_play_progress |
影视 | 90.00% |
美食 | 75.00% |
解释:
影视类视频2001被用户101、102、103看过,播放进度分别为:30秒(100%)、21秒(70%)、30秒(100%),平均播放进度为90.00%(保留两位小数);
美食类视频2002被用户102、103看过,播放进度分别为:30秒(50%)、60秒(100%),平均播放进度为75.00%(保留两位小数);
示例1
输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
uid INT NOT NULL COMMENT '用户ID',
video_id INT NOT NULL COMMENT '视频ID',
start_time datetime COMMENT '开始观看时间',
end_time datetime COMMENT '结束观看时间',
if_follow TINYINT COMMENT '是否关注',
if_like TINYINT COMMENT '是否点赞',
if_retweet TINYINT COMMENT '是否转发',
comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
video_id INT UNIQUE NOT NULL COMMENT '视频ID',
author INT NOT NULL COMMENT '创作者ID',
tag VARCHAR(16) NOT NULL COMMENT '类别标签',
duration INT NOT NULL COMMENT '视频时长(秒数)',
release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:21', 0, 0, 1, null),
(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:20', 0, 1, 0, 1732526),
(102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null),
(103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 1, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, '影视', 30, '2021-01-01 7:00:00'),
(2002, 901, '美食', 60, '2021-01-01 7:00:00'),
(2003, 902, '旅游', 90, '2020-01-01 7:00:00');
输出:
影视|90.00%
美食|75.00%
第一步,先算出每一个的播放进度
if(TIMESTAMPDIFF(SECOND,start_time,end_time)/duration > 1,1,
TIMESTAMPDIFF(SECOND,start_time,end_time)/duration )*100 as avg_play
第二步,连表返回基本数据集
select
tb2.tag tag,
if(TIMESTAMPDIFF(SECOND,start_time,end_time)/duration > 1,1,
TIMESTAMPDIFF(SECOND,start_time,end_time)/duration )*100 as avg_play
from tb_user_video_log tb1
left join tb_video_info tb2
on tb1.video_id = tb2.video_id
第三步,分组并过滤数据
select view1.tag tag,concat(round(sum(view1.avg_play)/count(1),2),'%') avg_play_progress
from
(select
tb2.tag tag,
if(TIMESTAMPDIFF(SECOND,start_time,end_time)/duration > 1,1,
TIMESTAMPDIFF(SECOND,start_time,end_time)/duration )*100 as avg_play
from tb_user_video_log tb1
left join tb_video_info tb2
on tb1.video_id = tb2.video_id
) view1
group by view1.tag
having sum(view1.avg_play)/count(1) > 60
order by avg_play_progress desc