【模板】计几常用函数

 1 struct Line{
 2     double a,b,c;
 3 };
 4 struct Point{
 5     double x,y;
 6     Point(){x=y=0;}
 7 
 8     Point(double a,double b){x=a,y=b;}
 9 
10     Point operator - (const Point& b)const
11     {return Point(x-b.x,y-b.y);}
12 
13     Point operator + (const Point& b)const
14     {return Point(x+b.x,y+b.y);}
15 
16     Point operator * (const double& b)const
17     {return Point(x*b,y*b);}
18 
19     //点看做向量,然后向量逆时针旋转 b (是弧度制)
20     Point rotate(const double& b)const
21     {return Point( x*cos(b) - y*sin(b) , x*sin(b) + y*cos(b) );}
22 
23     //求点关于直线l对称的点
24     Point corPoint(Line l)const{
25         Point p2;
26         double d = l.a*l.a + l.b*l.b;
27         p2.x = ( (l.b*l.b - l.a*l.a)*x - 2 * l.a * l.b * y - 2*l.a*l.c) /d;
28         p2.y = ( (l.a*l.a - l.b*l.b)*y - 2 * l.a * l.b * x - 2*l.b*l.c) /d;
29         return p2;
30     }
31 
32     double dot (const Point& b)const
33     {return x*b.x+y*b.y;}
34 
35     double cross (const Point& b,const Point& c)const
36     {return (b.x - x)*(c.y - y) - (c.x - x)*(b.y - y);}
37 
38     double ToPdis (const Point& b)const
39     {return sqrt( (x-b.x)*(x-b.x) + (y-b.y)*(y-b.y) );}
40 
41     //点到直线距离
42     double ToLdis (Line l)const{
43         return fabs(l.a * x + l.b * y + l.c) / sqrt(l.a*l.a + l.b*l.b);
44     }
45 
46     bool OnLine (const Point& st,Point& ed)const
47     {return !sgn(cross(st,ed));}
48 
49     bool OnSeg (const Point& st,Point& ed)const
50     {return OnLine(st,ed) && (*this - ed).dot(*this - st) < eps;}
51 };
View Code
 1 //两线段是否相交
 2 bool insert(Line l1,Line l2){
 3     return 
 4         max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
 5         max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
 6         max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
 7         max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
 8         sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s))<=0 &&
 9         sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s))<=0;
10 }
11 //两点求出直线
12 Line twoPoLine(Point p1,Point p2){
13     Line l;
14     l.a = p2.y - p1.y;
15     l.b = p1.x - p2.x;
16     l.c = p2.x * p1.y - p1.x * p2.y;
17     return l;
18 }
19 
20 Point LineCross(Point a,Point b,Point c,Point d){
21     double u = a.cross(b,c), v = b.cross(a,d);
22     return Point( (c.x*v + d.x*u)/(u+v) , (c.y*v + d.y*u)/(u+v) );
23 }
24 //求垂足
25 Point footOfPerpendicular(const Line& l, const Point& p)
26 {
27     double t = (l.a * p.x + l.b * p.y + l.c) / (l.a * l.a + l.b * l.b);
28     return p + Point(l.a, l.b) * t;
29 }
View Code

 

 

 

1 Point GetLineIntersection(Point a, Point va, Point b, Point vb) {
2     Point u = a - b;
3     double t = (vb ^  u) / (va ^ vb);
4     return a + va * t;
5 }
View Code

 极角排序

 1 int Quadrant(Point b)//象限排序
 2 {
 3     Point a = b - p0;
 4     if(a.x>=0&&a.y>=0)  return 1;
 5     if(a.x<=0&&a.y>=0)  return 2;
 6     if(a.x<=0&&a.y<=0)  return 3;
 7     return 4;
 8 }
 9  
10  
11 bool cmp(Point a,Point b)  //先按象限从小到大排序 再按极角从小到大排序
12 {
13     if(Quadrant(a)==Quadrant(b)){
14         if( p0.cross(a,b) == 0) return p0.dis(a) < p0.dis(b);
15         return p0.cross(a,b) > 0;
16     }
17     else return Quadrant(a)<Quadrant(b);
18 }
View Code

 

posted @ 2019-10-17 15:52  小布鞋  阅读(162)  评论(0编辑  收藏  举报