1.softmax从零实现
from mxnet.gluon import data as gdata
from sklearn import datasets
from mxnet import nd,autograd
# 加载数据集
digits = datasets.load_digits()
features,labels = nd.array(digits['data']),nd.array(digits['target'])
print(features.shape,labels.shape)
labels_onehot = nd.one_hot(labels,10)
print(labels_onehot.shape)
(1797, 64) (1797,)
(1797, 10)
class softmaxClassifier:
def __init__(self,inputs,outputs):
self.inputs = inputs
self.outputs = outputs
self.weight = nd.random.normal(scale=0.01,shape=(inputs,outputs))
self.bias = nd.zeros(shape=(1,outputs))
self.weight.attach_grad()
self.bias.attach_grad()
def forward(self,x):
output = nd.dot(x,self.weight) + self.bias
return self._softmax(output)
def _softmax(self,x):
step1 = x.exp()
step2 = step1.sum(axis=1,keepdims=True)
return step1 / step2
def _bgd(self,params,learning_rate,batch_size):
'''
批量梯度下降
'''
for param in params: # 直接使用mxnet的自动求梯度
param[:] = param - param.grad * learning_rate / batch_size
def loss(self,y_pred,y):
return nd.sum((-y * y_pred.log())) / len(y)
def dataIter(self,x,y,batch_size):
dataset = gdata.ArrayDataset(x,y)
return gdata.DataLoader(dataset,batch_size,shuffle=True)
def fit(self,x,y,learning_rate,epoches,batch_size):
for epoch in range(epoches):
for x_batch,y_batch in self.dataIter(x,y,batch_size):
with autograd.record():
y_pred = self.forward(x_batch)
l = self.loss(y_pred,y_batch)
l.backward()
self._bgd([self.weight,self.bias],learning_rate,batch_size)
if epoch % 50 == 0:
y_all_pred = self.forward(x)
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,self.loss(y_all_pred,y),self.accuracyScore(y_all_pred,y)))
def predict(self,x):
y_pred = self.forward(x)
return y_pred.argmax(axis=0)
def accuracyScore(self,y_pred,y):
acc_sum = (y_pred.argmax(axis=1) == y.argmax(axis=1)).sum().asscalar()
return acc_sum / len(y)
sfm_clf = softmaxClassifier(64,10)
sfm_clf.fit(features,labels_onehot,learning_rate=0.1,epoches=500,batch_size=200)
epoch:50,loss:
[1.9941667]
<NDArray 1 @cpu(0)>,accuracy:0.3550361713967724
epoch:100,loss:
[0.37214527]
<NDArray 1 @cpu(0)>,accuracy:0.9393433500278241
epoch:150,loss:
[0.25443634]
<NDArray 1 @cpu(0)>,accuracy:0.9549248747913188
epoch:200,loss:
[0.20699367]
<NDArray 1 @cpu(0)>,accuracy:0.9588202559821926
epoch:250,loss:
[0.1799827]
<NDArray 1 @cpu(0)>,accuracy:0.9660545353366722
epoch:300,loss:
[0.1619963]
<NDArray 1 @cpu(0)>,accuracy:0.9677239844184753
epoch:350,loss:
[0.14888664]
<NDArray 1 @cpu(0)>,accuracy:0.9716193656093489
epoch:400,loss:
[0.13875261]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:450,loss:
[0.13058177]
<NDArray 1 @cpu(0)>,accuracy:0.9760712298274903
epoch:500,loss:
[0.12379646]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933
print('预测结果:',sfm_clf.predict(features[:10]))
print('真实结果:',labels[:10])
预测结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
真实结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
2.使用mxnet实现softmax分类
from mxnet import gluon,nd,autograd,init
from mxnet.gluon import nn,trainer,loss as gloss,data as gdata
# 定义模型
net = nn.Sequential()
net.add(nn.Dense(10))
# 初始化模型
net.initialize(init=init.Normal(sigma=0.01))
# 损失函数
loss = gloss.SoftmaxCrossEntropyLoss(sparse_label=False)
# 优化算法
optimizer = trainer.Trainer(net.collect_params(),'sgd',{'learning_rate':0.1})
# 训练
epoches = 500
batch_size = 200
dataset = gdata.ArrayDataset(features, labels_onehot)
data_iter = gdata.DataLoader(dataset,batch_size,shuffle=True)
for epoch in range(epoches):
for x_batch,y_batch in data_iter:
with autograd.record():
l = loss(net.forward(x_batch), y_batch).sum() / batch_size
l.backward()
optimizer.step(batch_size)
if epoch % 50 == 0:
y_all_pred = net.forward(features)
acc_sum = (y_all_pred.argmax(axis=1) == labels_onehot.argmax(axis=1)).sum().asscalar()
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss(y_all_pred,labels_onehot).sum() / len(labels_onehot),acc_sum/len(y_all_pred)))
epoch:50,loss:
[2.1232333]
<NDArray 1 @cpu(0)>,accuracy:0.24652198107957707
epoch:100,loss:
[0.37193483]
<NDArray 1 @cpu(0)>,accuracy:0.9410127991096272
epoch:150,loss:
[0.25408813]
<NDArray 1 @cpu(0)>,accuracy:0.9543683917640512
epoch:200,loss:
[0.20680156]
<NDArray 1 @cpu(0)>,accuracy:0.9627156371730662
epoch:250,loss:
[0.1799252]
<NDArray 1 @cpu(0)>,accuracy:0.9666110183639399
epoch:300,loss:
[0.16203885]
<NDArray 1 @cpu(0)>,accuracy:0.9699499165275459
epoch:350,loss:
[0.14899409]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:400,loss:
[0.13890252]
<NDArray 1 @cpu(0)>,accuracy:0.9749582637729549
epoch:450,loss:
[0.13076076]
<NDArray 1 @cpu(0)>,accuracy:0.9755147468002225
epoch:500,loss:
[0.1239901]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933