es的分词器analyzer

analyzer  

分词器使用的两个情形:  
1,Index time analysis.  创建或者更新文档时,会对文档进行分词
2,Search time analysis.  查询时,对查询语句分词

    指定查询时使用哪个分词器的方式有:

  - 查询时通过analyzer指定分词器

  • GET test_index/_search
    {
      "query": {
        "match": {
          "name": {
            "query": "lin",
            "analyzer": "standard"
          }
        }
      }
    }
    View Code

  - 创建index mapping时指定search_analyzer

  • PUT test_index
    {
      "mappings": {
        "doc": {
          "properties": {
            "title":{
              "type": "text",
              "analyzer": "whitespace",
              "search_analyzer": "standard"
            }
          }
        }
      }
    }
    View Code

索引时分词是通过配置 Index mapping中的每个字段的参数analyzer指定的

# 不指定分词时,会使用默认的standard
PUT test_index
{
  "mappings": {
    "doc": {
      "properties": {
        "title":{
          "type": "text",
          "analyzer": "whitespace"     #指定分词器,es内置有多种analyzer
        }
      }
    }}}

注意:

  •  明确字段是否需要分词,不需要分词的字段将type设置为keyword,可以节省空间和提高写性能。

_analyzer api    

GET _analyze
{
  "analyzer": "standard",
  "text": "this is a test"
}
# 可以查看text的内容使用standard分词后的结果
{
  "tokens": [
    {
      "token": "this",
      "start_offset": 0,
      "end_offset": 4,
      "type": "<ALPHANUM>",
      "position": 0
    },
    {
      "token": "is",
      "start_offset": 5,
      "end_offset": 7,
      "type": "<ALPHANUM>",
      "position": 1
    },
    {
      "token": "a",
      "start_offset": 8,
      "end_offset": 9,
      "type": "<ALPHANUM>",
      "position": 2
    },
    {
      "token": "test",
      "start_offset": 10,
      "end_offset": 14,
      "type": "<ALPHANUM>",
      "position": 3
    }
  ]
}
View Code

设置analyzer

PUT test
{
  "settings": {
    "analysis": {    #自定义分词器
      "analyzer": {      # 关键字
        "my_analyzer":{   # 自定义的分词器
          "type":"standard",    #分词器类型standard
          "stopwords":"_english_"   #standard分词器的参数,默认的stopwords是\_none_
        }
      }
    }
  },
  "mappings": {
    "doc":{
      "properties": {
        "my_text":{
          "type": "text",
          "analyzer": "standard",  # my_text字段使用standard分词器
          "fields": {
            "english":{            # my_text.english字段使用上面自定义得my_analyzer分词器
              "type": "text", 
              "analyzer": "my_analyzer"
            }}}}}}}
POST test
/_analyze { "field": "my_text", # my_text字段使用的是standard分词器 "text": ["The test message."] } -------------->[the,test,message] POST test/_analyze { "field": "my_text.english", #my_text.english使用的是my_analyzer分词器 "text": ["The test message."] } ------------>[test,message]

ES内置了很多种analyzer。比如:

  • standard  由以下组成
    • tokenizer:Standard Tokenizer
    • token filter:Standard Token Filter,Lower Case Token Filter,Stop Token Filter 
      analyzer API测试 :
      POST _analyze
      {
        "analyzer": "standard",
        "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
      }

      得到结果:

      {
        "tokens": [
          {
            "token": "the",
            "start_offset": 0,
            "end_offset": 3,
            "type": "<ALPHANUM>",
            "position": 0
          },
          {
            "token": "2",
            "start_offset": 4,
            "end_offset": 5,
            "type": "<NUM>",
            "position": 1
          },
          {
            "token": "quick",
            "start_offset": 6,
            "end_offset": 11,
            "type": "<ALPHANUM>",
            "position": 2
          },
          {
            "token": "brown",
            "start_offset": 12,
            "end_offset": 17,
            "type": "<ALPHANUM>",
            "position": 3
          },
          {
            "token": "foxes",
            "start_offset": 18,
            "end_offset": 23,
            "type": "<ALPHANUM>",
            "position": 4
          },
          {
            "token": "jumped",
            "start_offset": 24,
            "end_offset": 30,
            "type": "<ALPHANUM>",
            "position": 5
          },
          {
            "token": "over",
            "start_offset": 31,
            "end_offset": 35,
            "type": "<ALPHANUM>",
            "position": 6
          },
          {
            "token": "the",
            "start_offset": 36,
            "end_offset": 39,
            "type": "<ALPHANUM>",
            "position": 7
          },
          {
            "token": "lazy",
            "start_offset": 40,
            "end_offset": 44,
            "type": "<ALPHANUM>",
            "position": 8
          },
          {
            "token": "dog's",
            "start_offset": 45,
            "end_offset": 50,
            "type": "<ALPHANUM>",
            "position": 9
          },
          {
            "token": "bone",
            "start_offset": 51,
            "end_offset": 55,
            "type": "<ALPHANUM>",
            "position": 10
          }
        ]
      }
      View Code
  • whitespace  空格为分隔符
    POST _analyze
    {
      "analyzer": "whitespace",
      "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    -->  [ The,2,QUICK,Brown-Foxes,jumped,over,the,lazy,dog's,bone. ]
  • simple     
    POST _analyze
    {
      "analyzer": "simple",
      "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    ---> [ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]

  • stop   默认stopwords用_english_ 
    POST _analyze
    {
      "analyzer": "stop",
      "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    -->[ quick, brown, foxes, jumped, over, lazy, dog, s, bone ]
    可选参数:
    # stopwords
    # stopwords_path
  • keyword  不分词的
    POST _analyze
    {
      "analyzer": "keyword",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    }
    得到  "token": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." 一条完整的语句

 

第三方analyzer插件---中文分词(ik分词器)

es内置很多分词器,但是对中文分词并不友好,例如使用standard分词器对一句中文话进行分词,会分成一个字一个字的。这时可以使用第三方的Analyzer插件,比如 ik、pinyin等。这里以ik为例

1,首先安装插件,重启es:

# bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.0/elasticsearch-analysis-ik-6.3.0.zip
# /etc/init.d/elasticsearch restart

2,使用示例:

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "你好吗?我有一句话要对你说呀。"
}
{
  "tokens": [
    {
      "token": "你好",
      "start_offset": 0,
      "end_offset": 2,
      "type": "CN_WORD",
      "position": 0
    },
    {
      "token": "好吗",
      "start_offset": 1,
      "end_offset": 3,
      "type": "CN_WORD",
      "position": 1
    },
    {
      "token": "",
      "start_offset": 4,
      "end_offset": 5,
      "type": "CN_CHAR",
      "position": 2
    },
    {
      "token": "",
      "start_offset": 5,
      "end_offset": 6,
      "type": "CN_CHAR",
      "position": 3
    },
    {
      "token": "一句话",
      "start_offset": 6,
      "end_offset": 9,
      "type": "CN_WORD",
      "position": 4
    },
    {
      "token": "一句",
      "start_offset": 6,
      "end_offset": 8,
      "type": "CN_WORD",
      "position": 5
    },
    {
      "token": "",
      "start_offset": 6,
      "end_offset": 7,
      "type": "TYPE_CNUM",
      "position": 6
    },
    {
      "token": "句话",
      "start_offset": 7,
      "end_offset": 9,
      "type": "CN_WORD",
      "position": 7
    },
    {
      "token": "",
      "start_offset": 7,
      "end_offset": 8,
      "type": "COUNT",
      "position": 8
    },
    {
      "token": "",
      "start_offset": 8,
      "end_offset": 9,
      "type": "CN_CHAR",
      "position": 9
    },
    {
      "token": "要对",
      "start_offset": 9,
      "end_offset": 11,
      "type": "CN_WORD",
      "position": 10
    },
    {
      "token": "",
      "start_offset": 11,
      "end_offset": 12,
      "type": "CN_CHAR",
      "position": 11
    },
    {
      "token": "说呀",
      "start_offset": 12,
      "end_offset": 14,
      "type": "CN_WORD",
      "position": 12
    }
  ]
}
分词结果

参考:https://github.com/medcl/elasticsearch-analysis-ik

 

还可以用内置的 character filter, tokenizer, token filter 组装一个analyzer(custom analyzer)

  • custom  定制analyzer,由以下几部分组成
    • 0个或多个e character filters
    • 1个tokenizer
    • 0个或多个 token filters
  • PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "type":"custom",
              "tokenizer":"standard",
              "char_filter":["html_strip"],
              "filter":["lowercase"]
            }
          }
        }
      }
    }
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's <b> bone.</b>"]
    }
    得到:[the,2,quick,brown,foxes,jumped,over,the,lazy,dog's,bone]
    View Code

自定义分词器

自定义分词需要在索引的配置中设定,如下所示:

PUT test_index
{
  "settings": {
    "analysis": {    # 分词设置,可以自定义
      "char_filter": {},   #char_filter  关键字
      "tokenizer": {},    #tokenizer 关键字
      "filter": {},     #filter  关键字
      "analyzer": {}    #analyzer 关键字
    }
  }
}

character filter  在tokenizer之前对原始文本进行处理,比如增加,删除,替换字符等

会影响后续tokenizer解析的position和offset信息

  • html strip  除去html标签和转换html实体
    • 参数:escaped_tags不删除的标签
  • POST _analyze
    {
      "tokenizer": "keyword",
      "char_filter": ["html_strip"],
      "text": ["<p>I&apos;m so <b>happy</b>!</p>"]
    }
    得到:
          "token": """
    
    I'm so happy!
    
    """
    #配置示例
    PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {  #关键字
            "my_analyzer":{   #自定义analyzer
              "tokenizer":"keyword",
              "char_filter":["my_char_filter"]
            }
          },
          "char_filter": {  #关键字
            "my_char_filter":{   #自定义char_filter
              "type":"html_strip",
              "escaped_tags":["b"]  #不从文本中删除的HTML标记数组
            }
          }}}}
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["<p>I&apos;m so <b>happy</b>!</p>"]
    }
    得到:
          "token": """
    
    I'm so <b>happy</b>!
    
    """,
    View Code
  • mapping    映射类型,以下参数必须二选一
    • mappings 指定一组映射,每个映射格式为 key=>value
    • mappings_path 绝对路径或者相对于config路径   key=>value
  • PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {     #关键字
            "my_analyzer":{   #自定义分词器
              "tokenizer":"standard",
              "char_filter":"my_char_filter"  
            }
          },
          "char_filter": {    #关键字
            "my_char_filter":{  #自定义char_filter
              "type":"mapping", 
              "mappings":[       #指明映射关系
                ":)=>happy",
                ":(=>sad"
              ]
            }}}}}
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["i am so :)"]
    }
    得到 [i,am,so,happy]
  • pattern replace
    • pattern参数  正则
    • replacement 替换字符串 可以使用$1..$9
    • flags  正则标志

tokenizer  将原始文档按照一定规则切分为单词

  • standard
    • 参数:max_token_length,最大token长度,默认是255
  • PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "tokenizer":"my_tokenizer"
            }
          },
          "tokenizer": { 
            "my_tokenizer":{
              "type":"standard",
              "max_token_length":5      
            }}}}}
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    }
    得到   [ The, 2, QUICK, Brown, Foxes, jumpe, d, over, the, lazy, dog's, bone ]
    # jumped 长度为6  在5这个位置被分割
    View Code
  • letter    非字母时分成多个terms
    POST _analyze
    {
      "tokenizer": "letter",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    }
    得到 [ The, QUICK, Brown, Foxes, jumped, over, the, lazy, dog, s, bone ]
    View Code
  • lowcase  跟letter tokenizer一样 ,同时将字母转化成小写
    POST _analyze
    {
      "tokenizer": "lowercase",
      "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    得到  [ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
    View Code
  • whitespace   按照空白字符分成多个terms
    • 参数:max_token_length
  • POST _analyze
    {
      "tokenizer": "whitespace",
      "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    得到 [ The, 2, QUICK, Brown-Foxes, jumped, over, the, lazy, dog's, bone. ]
    View Code
  • keyword   空操作,输出完全相同的文本
    • 参数:buffer_size,单词一个term读入缓冲区的长度,默认256
  • POST _analyze
    {
      "tokenizer": "keyword",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    }
    得到"token": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." 一个完整的文本
    View Code

token filter   针对tokenizer 输出的单词进行增删改等操作

  • lowercase  将输出的单词转化成小写
    POST _analyze
    {
      "filter": ["lowercase"],
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's  bone"]
    }
    --->
    "token": "the 2 quick brown-foxes jumped over the lazy dog's  bone"
    
    PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "type":"custom", 
              "tokenizer":"standard", 
              "filter":"lowercase"
            }
          }
        }
      }
    }
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
        "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's  bone"]
    }
    View Code
  • stop  从token流中删除stop words 。
    参数有:
    # stopwords   要使用的stopwords, 默认_english_
    # stopwords_path
    # ignore_case   设置为true则为小写,默认false
    # remove_trailing
    PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "type":"custom",
              "tokenizer":"standard",
              "filter":"my_filter"
            }
          },
          "filter": {
            "my_filter":{
              "type":"stop",
              "stopwords":["and","or","not"]
            }
          }
        }
      }
    }
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["lucky and happy not sad"]
    }
    -------------->
    [lucky,happy,sad]

     

 

posted @ 2018-07-20 16:49  卡布爱学习  阅读(56577)  评论(0编辑  收藏  举报