leetcode [310]Minimum Height Trees
For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n - 1
. You will be given the number n
and a list of undirected edges
(each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
Example 1 :
Input:n = 4
,edges = [[1, 0], [1, 2], [1, 3]]
0 | 1 / \ 2 3 Output:[1]
Example 2 :
Input:n = 6
,edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2 \ | / 3 | 4 | 5 Output:[3, 4]
Note:
- According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
- The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
题目大意:
找到最小高度的树。
解法:
leetcode越做到后面越做不动了,感觉好难啊...
这道题目参考了一下网上的解法,使用adj记录无向图的连接。
然后我们从每一个端点开始,这里的端点指的是1次顶点(也就是叶节点)我们让指针以相同的速度移动。当两个指针相遇时,我们只保留其中的一个,直到最后两个指针相遇或者一步之外,我们才找到根。
实际实现类似于BFS拓扑排序。删除叶子,更新内顶点的度数。然后把新叶子去掉。逐级执行,直到剩下2或1个节点为止。剩下的答案了!
时间复杂度和空间复杂度均为O(n)。
java:
class Solution { public List<Integer> findMinHeightTrees(int n, int[][] edges) { if (n==1) return Collections.singletonList(0); List<HashSet<Integer>>adj=new ArrayList<>(n); for (int i=0;i<n;i++) adj.add(new HashSet<Integer>()); for (int i=0;i<edges.length;i++){ adj.get(edges[i][0]).add(edges[i][1]); adj.get(edges[i][1]).add(edges[i][0]); } List<Integer> leaves=new ArrayList<>(); for (int i=0;i<adj.size();i++){ if (adj.get(i).size()==1) leaves.add(i); } while(n>2){ n-=leaves.size(); List<Integer>newLeaves=new ArrayList<>(); for (int i:leaves){ int j=adj.get(i).iterator().next(); adj.get(j).remove(i); if(adj.get(j).size()==1) newLeaves.add(j); } leaves=newLeaves; } return leaves; } }