UVa 10245 - The Closest Pair Problem

  题目大意:给出平面上的n个点,找出距离最近的两个点。

  由于n的取值比较大(n<10000),考虑使用分治法。大概就是把平面上的点分成两部分,分别处理左半部分L、右半部分R以及跨越分界线M的点对,分别求得左半部分内点的最近距离lmin和右半部分的最近距离rmin,令d=min(lmin, rmin),然后处理跨越分界线的点对,由于只需考虑比距离比d值小的点对,所以我们只考察点的x坐标在[M-d, M+d]范围内的点,找出其中的最短距离并更新即可。

 1 #include <cstdio>
 2 #include <cmath>
 3 #include <algorithm>
 4 using namespace std;
 5 #define MAXN 10000+10
 6 
 7 struct Point
 8 {
 9     double x, y;
10 };
11 Point point[MAXN], tmp[MAXN];
12 
13 bool cmp1(const Point& a, const Point& b)
14 {
15     if (a.x != b.x)  return a.x < b.x;
16     return a.y < b.y;
17 }
18 
19 bool cmp2(const Point& a, const Point& b)
20 {
21     if (a.y != b.y)  return a.y < b.y;
22     return a.x < b.x;
23 }
24 
25 double dis(const Point& a, const Point& b)
26 {
27     double t1 = (a.x - b.x) * (a.x - b.x);
28     double t2 = (a.y - b.y) * (a.y - b.y);
29     return sqrt(t1+t2);
30 }
31 
32 double conquer(int left, int right)
33 {
34     if (left == right)  return 10010;
35     if (right - left == 1)  return dis(point[left], point[right]);
36     int mid = (left + right) / 2;
37     double left_min = conquer(left, mid);
38     double right_min = conquer(mid+1, right);
39     double d = min(left_min, right_min);
40     int cnt = 0;
41     for (int i = left; i <= right; i++)
42         if (fabs(point[i].x-point[mid].x) < d)
43             tmp[cnt++] = point[i];
44     sort(tmp, tmp+cnt, cmp2);
45     for (int i = 0; i < cnt; i++)
46         for (int j = i+1; j < i+7 && j < cnt; j++)
47         {
48             double t = dis(tmp[i], tmp[j]);
49             if (t < d)  d = t;
50         }
51     return d;
52 }
53 
54 int main()
55 {
56 #ifdef LOCAL
57     freopen("in", "r", stdin);
58 #endif
59     int n;
60     while (scanf("%d", &n) != EOF && n)
61     {
62         for (int i = 0; i < n; i++)
63             scanf("%lf%lf", &point[i].x, &point[i].y);
64         sort(point, point+n, cmp1);
65         double ans = conquer(0, n-1);
66         if (ans > 10000)  printf("INFINITY\n");
67         else  printf("%.4lf\n", ans);
68     }
69     return 0;
70 }
View Code

  关于在考察跨越分界线的点对时所作的优化,可参考这里

posted @ 2013-08-24 20:03  xiaobaibuhei  阅读(246)  评论(0编辑  收藏  举报