数据结构之二叉树
二叉树定义
二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。
二叉树特点
1)每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。
2)左子树和右子树是有顺序的,次序不能任意颠倒。
3)即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。
二叉树性质
1)在二叉树的第i层上最多有2i-1 个节点 。(i>=1)
2)二叉树中如果深度为k,那么最多有2k-1个节点。(k>=1)
3)n0=n2+1 n0表示度数为0的节点数,n2表示度数为2的节点数。
4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。
5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:(1) 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
(2) 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
(3) 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。
满二叉树
满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点有:
1)叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
2)非叶子结点的度一定是2。
3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。
完全二叉树
完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
特点:
1)叶子结点只能出现在最下层和次下层。
2)最下层的叶子结点集中在树的左部。
3)倒数第二层若存在叶子结点,一定在右部连续位置。
4)如果结点度为1,则该结点只有左孩子,即没有右子树。
5)同样结点数目的二叉树,完全二叉树深度最小。
注:满二叉树一定是完全二叉树,但反过来不一定成立。
二叉树的存储结构
顺序存储
对于右斜树极端情况,采用顺序存储的方式是十分浪费空间的。因此,顺序存储一般适用于完全二叉树
二叉链表
既然顺序存储不能满足二叉树的存储需求,那么考虑采用链式存储。由二叉树定义可知,二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针域。
定义结点代码:
typedef struct BiTNode{ TElemType data;//数据 struct BiTNode *lchild, *rchild;//左右孩子指针 } BiTNode, *BiTree;
二叉树遍历
二叉树的访问次序可以分为四种:
前序遍历
中序遍历
后序遍历
层序遍历递归实现代码如下: /*二叉树的前序遍历递归算法*/ void PreOrderTraverse(BiTree T) { if(T==NULL) return; printf("%c", T->data); /*显示结点数据,可以更改为其他对结点操作*/ PreOrderTraverse(T->lchild); /*再先序遍历左子树*/ PreOrderTraverse(T->rchild); /*最后先序遍历右子树*/ } /*二叉树的中序遍历递归算法*/ void InOrderTraverse(BiTree T) { if(T==NULL) return; InOrderTraverse(T->lchild); /*中序遍历左子树*/ printf("%c", T->data); /*显示结点数据,可以更改为其他对结点操作*/ InOrderTraverse(T->rchild); /*最后中序遍历右子树*/ } /*二叉树的后序遍历递归算法*/ void PostOrderTraverse(BiTree T) { if(T==NULL) return; PostOrderTraverse(T->lchild); /*先后序遍历左子树*/ PostOrderTraverse(T->rchild); /*再后续遍历右子树*/ printf("%c", T->data); /*显示结点数据,可以更改为其他对结点操作*/ }