data imbalanced problem

本博客是《Learning from class-imbalanced data: Review of methods and applications》的简要记录。本文发表时间较早,主要是非深度学习的方法,仅供参考。

1. Imbalanced data classification approaches

1.1 Basic strategies for dealing with imbalanced learning

1.1.1 Resampling. 直接挑选样本

  • Over-sampling
  • Under-sampling

1.1.2 Feature selection and extraction

数据不平衡时,少样本类可能被视作噪声而忽略。在特征层面做特征选择或特征提取。

1.1.3 Cost-sensitive learning

weighted cross entropy loss和focal loss应该都属于这一类。

 

posted @ 2020-09-04 21:17  拎壶冲AR  阅读(163)  评论(0编辑  收藏  举报