[论文笔记]CVPR2017_Person Re-identification in the Wild
Title: Person Re-identification in the Wild
Authors: Liang Zheng1, Hengheng Zhang2, Shaoyan Sun3, Manmohan Chandraker4, Yi Yang1, Qi Tian2
Affiliations:
- University of Technology Sydney
- UTSA
- USTC
- UCSD & NEC Labs
两组大佬同期发表关于person search的文章(另一篇),虽然这篇题目是person re-id。person reid发展到了这个时期,detection+re-id作为两个分开的任务已经需要更进一步发展了,即将两个任务融合在一起,更符合现实性。XIAO Tong等提出了一个dataset,并提出了端到端的person search方法;这篇文章,Zheng Liang大大也提出了PRW数据集,同时提出了一种端到端的 person reid的pipeline。
Contribution
- A novel large-scale dataset, Person Re-identification in the Wild (PRW), for simultaneous analysis of person detection and re-ID.
- Comprehensive benchmarking of state-of-the-art detection and recognition methods on the PRW dataset.
- Novel insights into how detection aids re-ID, along with an effective fine-tuning strategy and similarity measure to illustrate how they might be utilized.
- Novel insights into the evaluation of pedestrian detectors for the specific application of person re-ID.
The PRW Dataset
- 6个摄像头:5 are 1080×1920 HD and 1 is 576×720 SD.
-
训练集 5, 704 frames and 482 IDs
-
测试集 6, 112 frames and 450 IDs
-
评价指标:
-
we mainly use the precision-recall curve and average precision to evaluate detection performance
- also report the log-average miss rate (MR)
-
-
2,057 query images for the 450 IDs in the test set, averaging 4.57 (maximum 6) queries/ID
-
the gallery in PRW varies with the settings of pedestrian detectors
- 用IoU评价detection,用mAP和rank-1,10,20 accuracy评价re-id
Pipeline of an end-to-end person re-ID system
Proposed Improvements
Cascaded fine-tuning strategy
包含两种,前一种是前人的,后一种是作者提出的
Confidence Weighted Similarity
之前的文章在比较query和gallery images时都将所有gallery boxes视作同等重要,这样会导致一个问题:当gallery的规模增大时,不可避免地会出现误检的结果,导致精度下降。因此作者将detection confidence和similarity mearsurement相乘,从直觉上表示false positive的目标的权重相应减小。
Experiments