Splash抓取jd

一、概述

在上一篇文章中,链接如下:https://www.cnblogs.com/xiao987334176/p/13656055.html

已经介绍了如何使用Splash抓取javaScript动态渲染页面

这里做一下项目实战,以爬取京东商城商品冰淇淋为例吧

环境说明

操作系统:centos 7.6

docker版本:19.03.12

ip地址:192.168.0.10

说明:使用docker安装Splash服务

 

操作系统:windows 10

python版本:3.7.9

ip地址:192.168.0.9

说明:使用Pycharm开发工具,用于本地开发。

 

关于Splash的使用,参考上一篇文章,这里就不做说明了。

 

二、分析页面

打开京东商城,输入关键字:冰淇淋,滑动滚动条,我们发现随着滚动条向下滑动,越来越多的商品信息被刷新了,这说明该页面部分是ajax加载

 

 注意:每一条商品信息,都是在<div class="gl-i-wrap"></div>里面的。

 

我们打开scrapy shell 爬取该页面,如下图:

scrapy shell "https://search.jd.com/Search?keyword=%E5%86%B0%E6%B7%87%E6%B7%8B&enc=utf-8"

输出:

...
[s]   view(response)    View response in a browser
>>>

注意:url不要用单引号,否则会报错。

 

接下来,输入以下命令,使用css选择器

>>> response.css('div.gl-i-wrap')
[<Selector xpath="descendant-or-self::div[@class and contains(concat(' ', normalize-space(@class), ' '
), ' gl-i-wrap ')]"
...

返回了很多Selector 对象。

 

统计商品信息个数

>>> len(response.css('div.gl-i-wrap'))
30

得到返回结果发现只有30个冰淇凌的信息,而我们再页面中明明看见了60个冰淇凌信息,这是为什么呢?

答:这也说明了刚开始页面只用30个冰淇淋信息,而我们滑动滑块时,执行了js代码,并向后台发送了ajax请求,浏览器拿到数据后再进一步渲染出另外了30个信息

我们可以点击network选项卡再次确认:

 

 

 

鉴于此,我们就想出了一种解决方案:即用js代码模拟用户滑动滑块到底的行为再结合execute端点提供的js代码执行服务即可(小伙伴们让我们开始实践吧)

 

 注意:<div id="footer-2017"></div>就是页面底部了,因此,只需要滑动到底部即可。

 

首先:模拟用户行为

在console,输入以下命令:

e = document.getElementById("footer-2017")
e.scrollIntoView(true)

效果如下,就直接滑动到底部了。

参数解释:

scrollIntoView是一个与页面(容器)滚动相关的API(官方解释),该API只有boolean类型的参数能得到良好的支持(firefox 36+都支持)

参数为true时调用该函数,页面(或容器)发生滚动,使element的顶部与视图(容器)顶部对齐;

 

使用scrapy.Request

上面我们使用Request发送请求,观察结果只有30条。为什么呢?因为页面时动态加载的所有我们只收到了30个冰淇淋的信息。

所以这里,使用scrapy.Request发送请求,并使用execute 端点解决这个问题。

打开上一篇文章中的爬虫项目dynamic_page,使用Pycharm打开,并点开Terminal

输入dir,确保当前目录是dynamic_page

(crawler) E:\python_script\爬虫\dynamic_page>dir
 驱动器 E 中的卷是 file
 卷的序列号是 1607-A400

 E:\python_script\爬虫\dynamic_page 的目录

2020/09/12  10:37    <DIR>          .
2020/09/12  10:37    <DIR>          ..
2020/09/12  10:20               211 bin.py
2020/09/12  14:30                 0 dynamicpage_pipline.json
2020/09/12  10:36    <DIR>          dynamic_page
2020/09/12  10:33                 0 result.csv
2020/09/12  10:18               267 scrapy.cfg
               4 个文件            478 字节
               3 个目录 260,445,159,424 可用字节

 

接下来打开scrapy shell,输入命令:

scrapy shell 

输出:

...
[s]   view(response)    View response in a browser
>>>

 

最后粘贴以下代码:

from scrapy_splash import SplashRequest  #使用scrapy.splash.Request发送请求

url = "https://search.jd.com/Search?keyword=%E5%86%B0%E6%B7%87%E6%B7%8B&enc=utf-8"
lua = '''
function main(splash)
    splash:go(splash.args.url)
    splash:wait(3)
    splash:runjs("document.getElementById('footer-2017').scrollIntoView(true)")
    splash:wait(3)
    return splash:html()
end
'''
fetch(SplashRequest(url,endpoint = 'execute',args= {'lua_source':lua})) #再次请求,我们可以看到现在已通过splash服务的8050端点渲染了js代码,并成果返回结果
len(response.css('div.gl-i-wrap'))

 

效果如下:

[s]   view(response)    View response in a browser
>>> from scrapy_splash import SplashRequest  #使用scrapy.splash.Request发送请求
>>> url = 'https://search.jd.com/Search?keyword=%E5%86%B0%E6%B7%87%E6%B7%8B&enc=utf-8'
>>> lua = '''
... function main(splash)
...     splash:go(splash.args.url)
...     splash:wait(3)
...     splash:runjs("document.getElementById('footer-2017').scrollIntoView(true)")
...     splash:wait(3)
...     return splash:html()
... end
... '''
>>> fetch(SplashRequest(url,endpoint = 'execute',args= {'lua_source':lua})) #再次请求,我们可以看到现
在已通过splash服务的8050端点渲染了js代码,并成果返回结果
2020-09-12 14:30:54 [scrapy.core.engine] INFO: Spider opened
2020-09-12 14:30:54 [scrapy.downloadermiddlewares.redirect] DEBUG: Redirecting (302) to <GET https://w
ww.jd.com/error.aspx> from <GET https://search.jd.com/robots.txt>
2020-09-12 14:30:55 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.jd.com/error.aspx> (ref
erer: None)
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 27 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 83 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 92 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 202 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 351 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 375 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 376 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 385 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 386 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 387 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 388 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 389 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 397 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 400 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 403 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 404 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 405 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 406 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 407 without any user agent to enforce it on.
2020-09-12 14:30:55 [protego] DEBUG: Rule at line 408 without any user agent to enforce it on.
2020-09-12 14:30:55 [scrapy.core.engine] DEBUG: Crawled (404) <GET http://192.168.0.10:8050/robots.txt
> (referer: None)
2020-09-12 14:31:10 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://search.jd.com/Search?keywor
d=%E5%86%B0%E6%B7%87%E6%B7%8B&enc=utf-8 via http://192.168.0.10:8050/execute> (referer: None)
>>> len(response.css('div.gl-i-wrap'))
60

注意:由于fetch不能直接在python代码中执行,所以只能在scrapy shell 模式中执行。

 

最后的任务就回归到了提取内容了阶段了,小伙伴让我们完成整个代码吧!---这里结合scrapy shell 进行测试

三、代码实现

新建项目

这里对目录就没有什么要求了,找个空目录就行。

打开Pycharm,并打开Terminal,执行以下命令

scrapy startproject ice_cream
cd ice_cream
scrapy genspider jd search.jd.com

 

在scrapy.cfg同级目录,创建bin.py,用于启动Scrapy项目,内容如下:

#在项目根目录下新建:bin.py
from scrapy.cmdline import execute
# 第三个参数是:爬虫程序名
execute(['scrapy', 'crawl', 'jd',"--nolog"])

 

创建好的项目树形目录如下:

./
├── bin.py
├── ice_cream
│   ├── __init__.py
│   ├── items.py
│   ├── middlewares.py
│   ├── pipelines.py
│   ├── settings.py
│   └── spiders
│       ├── __init__.py
│       └── jd.py
└── scrapy.cfg

 

修改settIngs.py

改写settIngs.py文件这里小伙伴们可参考github(https://github.com/scrapy-plugins/scrapy-splash)---上面有详细的说明

在最后添加如下内容:

# Splash服务器地址
SPLASH_URL = 'http://192.168.0.10:8050'
# 开启两个下载中间件,并调整HttpCompressionMiddlewares的次序
DOWNLOADER_MIDDLEWARES = {
    'scrapy_splash.SplashCookiesMiddleware': 723,
    'scrapy_splash.SplashMiddleware': 725,
    'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810,
}
# 设置去重过滤器
DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter'
# 用来支持cache_args(可选)
SPIDER_MIDDLEWARES = {
    'scrapy_splash.SplashDeduplicateArgsMiddleware': 100,
}
DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter'
HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage'
ITEM_PIPELINES = {
   'ice_cream.pipelines.IceCreamPipeline': 100,
}

 

注意:请根据实际情况,修改Splash服务器地址,其他的不需要改动。

 

修改文件jd.py

# -*- coding: utf-8 -*-
import scrapy
from scrapy_splash import SplashRequest
from ice_cream.items import IceCreamItem

#自定义lua脚本
lua = '''
function main(splash)
    splash:go(splash.args.url)
    splash:wait(3)
    splash:runjs("document.getElementById('footer-2017').scrollIntoView(true)")
    splash:wait(3)
    return splash:html()
    end
'''


class JdSpider(scrapy.Spider):
    name = 'jd'
    allowed_domains = ['search.jd.com']
    start_urls = ['https://search.jd.com/Search?keyword=%E5%86%B0%E6%B7%87%E6%B7%8B&enc=utf-8']
    base_url = 'https://search.jd.com/Search?keyword=%E5%86%B0%E6%B7%87%E6%B7%8B&enc=utf-8'
    # 自定义配置,注意:变量名必须是custom_settings
    custom_settings = {
        'REQUEST_HEADERS': {
            'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36',
        }
    }

    def parse(self, response):
        # 这里能获取100页
        page_num = int(response.css('span.fp-text i::text').extract_first())
        # 但是100页太多了,这里固定为2页
        page_num = 2
        # print("page_num", page_num)
        for i in range(page_num):
            url = '%s?page=%s' % (self.base_url, 2 * i + 1)  # 通过观察我们发现url页面间有规律
            # print("url", url)
            yield SplashRequest(url, headers=self.settings.get('REQUEST_HEADERS'), endpoint='execute',
                                args={'lua_source': lua}, callback=self.parse_item)

    def parse_item(self, response):  # 页面解析函数
        # 创建item字段对象,用来存储信息
        item = IceCreamItem()

        for sel in response.css('div.gl-i-wrap'):
            name = sel.css('div.p-name em').extract_first()
            price = sel.css('div.p-price i::text').extract_first()
            # print("name", name)
            # print("price", price)

            item['name'] = name
            item['price'] = price
            yield item
            # yield {
            #     'name': name,
            #     'price': price,
            # }
View Code

 

修改items.py

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class IceCreamItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    # 与itcast.py定义的一一对应
    name = scrapy.Field()
    price = scrapy.Field()
View Code

 

修改pipelines.py

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
import json

class IceCreamPipeline(object):
    def __init__(self):

        #python3保存文件 必须需要'wb' 保存为json格式
        self.f = open("ice_cream_pipline.json",'wb')

    def process_item(self, item, spider):
        # 读取item中的数据 并换行处理
        content = json.dumps(dict(item), ensure_ascii=False) + ',\n'
        self.f.write(content.encode('utf=8'))

        return item

    def close_spider(self,spider):
        #关闭文件
        self.f.close()
View Code

 

执行bin.py,等待1分钟,就会生成文件ice_cream_pipline.json

打开json文件,内容如下:

{"name": "<em><span class=\"p-tag\" style=\"background-color:#c81623\">京东超市</span>\t\n明治(meiji)草莓白巧克力雪糕 245g(6支)彩盒 <font class=\"skcolor_ljg\">冰淇淋</font></em>", "price": "46.80"},
{"name": "<em><span class=\"p-tag\" style=\"background-color:#c81623\">京东超市</span>\t\n伊利 巧乐兹香草巧克力口味脆皮甜筒雪糕<font class=\"skcolor_ljg\">冰淇淋</font>冰激凌冷饮 73g*6/盒</em>", "price": "32.80"},
...

 

 

本文参考链接:

https://www.cnblogs.com/518894-lu/p/9067208.html

 

posted @ 2020-09-08 15:24  肖祥  阅读(1008)  评论(0编辑  收藏  举报