(四)ELK Logstash filter

 
 
apache 日志实例:
input {
    # access日志
    file {
        type => "apache_access"
        tag => "apache_access"
        path => ["/var/log/apache/access.log"]
        start_position => beginning
    }
    # error日志
    file {
        type => "apache_error"
        tag => "apache_error"
        path => ["/var/log/apache/error.log"]
        start_position => beginning
    }
}

filter {
    # 根据 input 添加的 type 来区分, 实现同时读取两种日志, 也可以用 tag 来区分 (例如 if [tag] in "apache_access")
    if [type] == "apache_access"{
        # 文本片段切分的方式来切分日志事件
        # 推荐使用grokdebugger来写匹配模式: http://grokdebug.herokuapp.com/
        # grok官方详解: https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
        grok {
            match => { "message" => "%{COMBINEDAPACHELOG}"}
        }
        # data插件可以用来转换你的日志记录中的时间字符串, 然后转存到 @timestamp 字段里
        date {
            match => [ "timestamp" , "dd/MMM/YYYY:HH:mm:ss Z" ]
        }
        # 通过geoip能获取到很多的信息,包括经纬度,国家,城市,地区等信息
        geoip {
            # 来源于apache日志中的clientip
            source => "clientip"
        }
        # useragent插件可以帮助我们过滤出浏览器版本、型号以及系统版本
        useragent {
            source => "agent"
            target => "useragent"
        }
    } else if [type] == "apache_error"{
        grok {
            match => { "message" => "\[(?<mytimestamp>%{DAY:day} %{MONTH:month} %{MONTHDAY} %{TIME} %{YEAR})\] \[%{WORD:module}:%{LOGLEVEL:loglevel}\] \[pid %{NUMBER:pid}:tid %{NUMBER:tid}\]( \(%{POSINT:proxy_errorcode}\)%{DATA:proxy_errormessage}:)?( \[client %{IPORHOST:client}:%{POSINT:clientport}\])? %{DATA:errorcode}: %{GREEDYDATA:message}" }
        }
        date {
            match => [ "mytimestamp" , "EEE MMM dd HH:mm:ss.SSSSSS yyyy" ]
        }
    }

    #转换类型 (integer, float, integer_eu, float_eu, string, boolean)
    #mutate {
    #    convert => ["ctime", "integer"]
    #    convert => ["lat", "float"]
    #}

    #当某条日志信息符合if规则时
    #if [field_name] == "value" {
    #    #drop可以跳过某些不想统计的日志信息
    #    drop {}
    #}

    #create_at为时间戳时需要转换为0时区(UTC), 然后放入@timestamp字段里
    #date {
    #   match => ["create_at", "yyyy-MM-dd HH:mm:ss,SSS", "UNIX"]
    #   #match => ["create_at", "UNIX"]
    #   target => "@timestamp"
    #   locale => "cn"
    #   #remove_field => 'create_at' #删除字段
    #}

    # 执行ruby代码
    #ruby {
    #    code => "event.set('timestamp', event.get('@timestamp').time.localtime + 8*60*60)"
    #}
    #ruby {
    #    code => "event.set('@timestamp',event.get('timestamp'))"
    #}
}

# 输出插件将数据发送到一个特定的目的地, 除了elasticsearch还有好多可输出的地方, 例如file, csv, mongodb, redis, syslog等
output {
    if [type] == "apache_access"{
        elasticsearch {
            hosts => [ "localhost:9200" ]
            # 记录的index索引名称格式
            index => "apache-access-log-%{+YYYY.MM}"
        }
    } else if [type] == "apache_error"{
        elasticsearch {
            hosts => [ "localhost:9200" ]
            index => "apache-error-log"
        }
    }
}

1、grok插件

grok插件有非常强大的功能,他能匹配一切数据,但是他的性能和对资源的损耗同样让人诟病。

filter{
    grok{
        #只说一个match属性,他的作用是从message 字段中吧时间给抠出来,并且赋值给另个一个字段logdate。
        #首先要说明的是,所有文本数据都是在Logstash的message字段中中的,我们要在过滤器里操作的数据就是message。
        #第二点需要明白的是grok插件是一个十分耗费资源的插件,这也是为什么我只打算讲解一个TIMESTAMP_ISO8601正则表达式的原因。
        #第三点需要明白的是,grok有超级多的预装正则表达式,这里是没办法完全搞定的,也许你可以从这个大神的文章中找到你需要的表达式
        #http://blog.csdn.net/liukuan73/article/details/52318243
        #但是,我还是不建议使用它,因为他完全可以用别的插件代替,当然,对于时间这个属性来说,grok是非常便利的。
        match => ['message','%{TIMESTAMP_ISO8601:logdate}']
    }
}

2、mutate插件

mutate插件是用来处理数据的格式的,你可以选择处理你的时间格式,或者你想把一个字符串变为数字类型(当然需要合法),同样的你也可以返回去做。可以设置的转换类型 包括: "integer", "float" 和 "string"。

filter {
    mutate {
        #接收一个数组,其形式为value,type
        #需要注意的是,你的数据在转型的时候要合法,你总是不能把一个‘abc’的字符串转换为123的。
        convert => [
                    #把request_time的值装换为浮点型
                    "request_time", "float",
                    #costTime的值转换为整型
                    "costTime", "integer"
                    ]
    }
}

3、ruby插件

ruby插件可以使用任何的ruby语法,无论是逻辑判断,条件语句,循环语句,还是对字符串的操作,对EVENT对象的操作,都是极其得心应手的。

filter {
    ruby {
        #ruby插件有两个属性,一个init 还有一个code
        #init属性是用来初始化字段的,你可以在这里初始化一个字段,无论是什么类型的都可以,这个字段只是在ruby{}作用域里面生效。
        #这里我初始化了一个名为field的hash字段。可以在下面的coed属性里面使用。
        init => [field={}]
        #code属性使用两个冒号进行标识,你的所有ruby语法都可以在里面进行。
        #下面我对一段数据进行处理。
        #首先,我需要在把message字段里面的值拿到,并且对值进行分割按照“|”。这样分割出来的是一个数组(ruby的字符创处理)。
        #第二步,我需要循环数组判断其值是否是我需要的数据(ruby条件语法、循环结构)
        #第三步,我需要吧我需要的字段添加进入EVEVT对象。
        #第四步,选取一个值,进行MD5加密
        #什么是event对象?event就是Logstash对象,你可以在ruby插件的code属性里面操作他,可以添加属性字段,可以删除,可以修改,同样可以进行树脂运算。
        #进行MD5加密的时候,需要引入对应的包。
        #最后把冗余的message字段去除。
        code => "
            array=event。get('message').split('|')
            array.each do |value|
                if value.include? 'MD5_VALUE'
                    then 
                        require 'digest/md5'
                        md5=Digest::MD5.hexdigest(value)
                        event.set('md5',md5)
                end
                if value.include? 'DEFAULT_VALUE'
                    then
                        event.set('value',value)
                end
            end
             remove_field=>"message"
        "
    }
}

4、date插件 

这里需要合前面的grok插件剥离出来的值logdate配合使用(当然也许你不是用grok去做)。

filter{
    date{
        #还记得grok插件剥离出来的字段logdate吗?就是在这里使用的。你可以格式化为你需要的样子,至于是什么样子。就得你自己取看啦。
        #为什什么要格式化?
        #对于老数据来说这非常重要,应为你需要修改@timestamp字段的值,如果你不修改,你保存进ES的时间就是系统但前时间(+0时区)
        #单你格式化以后,就可以通过target属性来指定到@timestamp,这样你的数据的时间就会是准确的,这对以你以后图表的建设来说万分重要。
        #最后,logdate这个字段,已经没有任何价值了,所以我们顺手可以吧这个字段从event对象中移除。
        match=>["logdate","dd/MMM/yyyy:HH:mm:ss Z"]
        target=>"@timestamp"
        remove_field => 'logdate'
        #还需要强调的是,@timestamp字段的值,你是不可以随便修改的,最好就按照你数据的某一个时间点来使用,
        #如果是日志,就使用grok把时间抠出来,如果是数据库,就指定一个字段的值来格式化,比如说:"timeat", "%{TIMESTAMP_ISO8601:logdate}"
        #timeat就是我的数据库的一个关于时间的字段。
        #如果没有这个字段的话,千万不要试着去修改它。

    }
}

5、json插件

这个插件也是极其好用的一个插件,现在我们的日志信息,基本都是由固定的样式组成的,我们可以使用json插件对其进行解析,并且得到每个字段对应的值。
filter{
    #source指定你的哪个值是json数据。
    json {
         source => "value"
    }
    #注意:如果你的json数据是多层的,那么解析出来的数据在多层结里是一个数组,你可以使用ruby语法对他进行操作,最终把所有数据都装换为平级的。

}

json插件还是需要注意一下使用的方法的,下图就是多层结构的弊端:

 

对应的解决方案为:

ruby{
    code=>"
    kv=event.get('content')[0]
    kv.each do |k,v|
    event.set(k,v)
    end"
    remove_field => ['content','value','receiptNo','channelId','status']
}

  

 

posted @ 2019-03-07 17:37  丿小贰灬  阅读(240)  评论(0编辑  收藏  举报