图论-floyd算法-Dijkstra-python实现

  这里我写了floyd算法以及求图的中点,中心,直径,需要的自取

1.算法:

import numpy as np
a = float("inf") #无穷大

w0 = [[0,1,a,1],\
      [a,0,1,a],\
      [a,a,0,1],\
      [a,a,a,0]]

length = len(w0)
r0_arr = np.zeros((length,length),dtype = "float32")
w0_arr = np.array(w0)

#算r0_arr
for i in range(length):
    for j in range(length):
        if w0_arr[i][j] == a:
            r0_arr[i][j] = 0
        elif w0_arr[i][j] == 0:
            r0_arr[i][j] = 0
        else:
            r0_arr[i][j] = j + 1

#floyd算法
for k in range(length):
    print("k = {}:".format(k))
    print("w{} = ".format(k))
    print(w0_arr)
    print("r{} = ".format(k))
    print(r0_arr)
    print("\n")
    for i in range(length):
        for j in range(length):
            if w0_arr[i][j] > w0_arr[i][k] + w0_arr[k][j]:
                w0_arr[i][j] = w0_arr[i][k] + w0_arr[k][j]
                r0_arr[i][j] = r0_arr[i][k]

print("k = {}:".format(length))
print("w{} = ".format(length))
print(w0_arr)
print("r{} = ".format(length))
print(r0_arr)
print("\n")   
       

'''
w0 = [[0,a,a,1.2,9.2,a,0.5],\
      [a,0,a,5,a,3.1,2],\
      [a,a,0,a,a,4,1.5],\
      [1.2,5,a,0,6.7,a,a],\
      [9.2,a,a,6.7,0,15.6,a],\
      [a,3.1,4,a,15.6,0,a],\
      [0.5,2,1.5,a,a,a,0]]
w0 = [[0,9,1,3,a,a],\
      [1,0,4,a,7,a],\
      [2,a,0,a,1,a],\
      [a,a,5,0,2,7],\
      [a,6,2,8,0,5],\
      [7,a,2,a,2,0]]
p143 127
'''

 

2.图的中点,中心,直径

import numpy as np
a = float("inf") #无穷大

w0 = [[0,a,a,1.2,9.2,a,0.5],\
      [a,0,a,5,a,3.1,2],\
      [a,a,0,a,a,4,1.5],\
      [1.2,5,a,0,6.7,a,a],\
      [9.2,a,a,6.7,0,15.6,a],\
      [a,3.1,4,a,15.6,0,a],\
      [0.5,2,1.5,a,a,a,0]]

length = len(w0)
r0_arr = np.zeros((length,length),dtype = "float32")
w0_arr = np.array(w0)

#算r0_arr
for i in range(length):
    for j in range(length):
        if w0_arr[i][j] == a:
            r0_arr[i][j] = 0
        elif w0_arr[i][j] == 0:
            r0_arr[i][j] = 0
        else:
            r0_arr[i][j] = j + 1

#floyd算法
for k in range(length):
    for i in range(length):
        for j in range(length):
            if w0_arr[i][j] > w0_arr[i][k] + w0_arr[k][j]:
                w0_arr[i][j] = w0_arr[i][k] + w0_arr[k][j]
                r0_arr[i][j] = r0_arr[i][k]

w_length = w0_arr #输出的最终w

max_w = [] #存储各行的最大值
sum_w = [] #存储各行的和
for i in range(length):
    max_w.append(max(w_length[i]))
    sum_w.append(sum(w_length[i]))

print(max_w)
print(sum_w)

network_center = max_w.index(min(max_w)) + 1 #网的中心
network_point  = sum_w.index(min(sum_w)) + 1 #网的中点
network_diameter = max(max_w) #网的直径
print("network_center:",network_center)
print("network_point:",network_point)
print("network_diameter:",network_diameter)
    

 

3. Dijkstra 算法

# path_matrix = {
#     'A': {'B': 4, 'C': 6, 'D': 6, 'E': float("inf"), 'F': float("inf"), "G": float("inf")},
#     'B': {'A': float("inf"), "C": 1, "D": float("inf"), "E": 7, "F": float("inf"), "G": float("inf")},
#     'C':{'A':float("inf"),'B':float("inf"),'D':float("inf"),'E':6,'F':4,'G':float("inf")},
#     'D':{'A':float("inf"),'B':float("inf"),'C':2,'E':6,'F':4,'G':float("inf")},
#     'E':{'A':float("inf"),'B':float("inf"),'C':float("inf"),'D' :float("inf"),'F':float("inf"),'G':6},
#     'F':{'A':float("inf"),'B':float("inf"),'C':float("inf"),'D' :float("inf"),'E':1,'G':8},
#     'G':{'A':float("inf"),'B':float("inf"),'C':float("inf"),'D' :float("inf"),'E':1,'F':float("inf")}
# }
path_matrix = {
    'A': {'B': 1, 'C': 1, 'D': float("inf"), 'E': float("inf"), 'F': float("inf"), "G": float("inf"), "H": float("inf")},
    'B': {'A': float("inf"), "C": float("inf"), "D": float("inf"), "E": 1, "F": float("inf"), "G": float("inf"), "H": float("inf")},
    'C': {'A': float("inf"), 'B': float("inf"), 'D': 1, 'E': float("inf"), 'F': 1, 'G': float("inf")},
    'D': {'A': float("inf"), 'B': float("inf"), 'C': float("inf"), 'E': 1, 'F': float("inf"), 'G': float("inf"), "H": float("inf")},
    'E': {'A': float("inf"), 'B': float("inf"), 'C': float("inf"), 'D': float("inf"), 'F': float("inf"), 'G': float("inf"),  "H": 1},
    'F': {'A': float("inf"), 'B': float("inf"), 'C': float("inf"), 'D': float("inf"), 'E': float("inf"), 'G': 1, "H": float("inf")},
    'G': {'A': float("inf"), 'B': float("inf"), 'C': float("inf"), 'D': float("inf"), 'E': float("inf"), 'F': float("inf"), "H": 1},
    'H': {'A': float("inf"), 'B': float("inf"), 'C': float("inf"), 'D': float("inf"), 'E': float("inf"), 'F': float("inf"), 'G': float("inf")},
}


def get_shortest_path(path_maxtrix,origin_node):
    '''
    根据dijkstra算法求解从origin_node出发到各点的路径
    :param path_maxtrix: 各点到各点的路径情况,dict类型
    :param origin_node: 起始位置,str类型
    :return: origin_node到各点的最短距离,dict类型
    '''
    visited_node = [origin_node]
    result = path_maxtrix[origin_node]
    del path_maxtrix["A"]
    unvisited_list = list(path_maxtrix.keys())
    # print(visited_node)
    # print(unvisited_list)
    # print(result)
    # print(path_matrix)

    while len(unvisited_list):
        temp_node = visited_node[-1]
        if temp_node != origin_node:  # 如果不是起始点
            distance_list = []
            node_list = []
            for item in unvisited_list:
                distance_list.append(path_matrix[temp_node][item])
                node_list.append(item)
                # print(result[temp_node]+path_matrix[temp_node][item])
                if result[item] > result[temp_node] + path_matrix[temp_node][item]:
                    result[item] = result[temp_node] + path_matrix[temp_node][item]
            print(node_list)
            min_dist = min(distance_list)
            the_index = distance_list.index(min_dist)
            min_node = unvisited_list.pop(the_index)
            visited_node.append(min_node)

        else:  # 如果是起始点
            # 找到距离起点路径最短的地点
            min_key = list(result.keys())[0]
            min_path = result[min_key]
            for key, value in result.items():
                if value < min_path:
                    min_path = value
                    min_key = key

            visited_node.append(min_key)
            the_index = unvisited_list.index(min_key)
            unvisited_list.pop(the_index)
    print(result)


get_shortest_path(path_matrix, "A")
# https://zhuanlan.zhihu.com/p/374252139

 

posted @ 2020-10-29 16:09  落月_YU  阅读(1186)  评论(0编辑  收藏  举报