PYTHON-numpy.mean
1.定义:
numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>) #a:数组(不是数组就转为数组) #axis:可选(不选择就是全部数的平均值)为0求各列平均值,为1求各行平均值 #dtype数据类型,可选,用于计算平均值的类型。对于整数输入,默认float64; 对于浮点输入,它与输入dtype相同。 #ndarray,可选,放置结果的备用输出数组。默认值为None; 如果提供的话,它的形状必须与预期的输出形状相同,但是如果需要的话,将强制转换类型。 #输出:如果out = None,则返回一个包含平均值的新数组,否则返回对输出数组的引用。
2.例子:
2.1 数组:
>>> a = np.array([[1,2],[3,4]]) >>> a array([[1, 2], [3, 4]]) >>> np.mean(a) 2.5 >>> np.mean(a,axis = 0) array([2., 3.]) >>> np.shape(np.mean(a,axis = 0)) (2,) >>> np.mean(a,axis = 1) array([1.5, 3.5]) >>> np.shape(np.mean(a,axis = 1)) (2,) >>> np.shape(a) (2, 2)
>>> type(np.mean(a,axis = 1))
<class 'numpy.ndarray'>
对数组而说,直接返回1*n的 array(数组)
2.2 矩阵:
>>> num1 = np.array([[1,2,3],[2,3,4],[3,4,5],[4,5,6]]) >>> num1 array([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]]) >>> num2 = np.mat(num1) >>> num2 matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]]) >>> type(num2) <class 'numpy.matrix'> >>> num3 = np.asmatrix(num1) >>> num3 matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]]) >>> type(num3) <class 'numpy.matrix'> >>> np.mean(num2,axis = 0) matrix([[2.5, 3.5, 4.5]]) >>> np.mean(num2,axis = 0) matrix([[2.5, 3.5, 4.5]]) >>> np.mean(num2,axis = 1) matrix([[2.], [3.], [4.], [5.]])
#说明: #mat == asmatrix转换为矩阵 #矩阵的话: #axis = 0,计算列均值,返回1*n #axis = 1,计算行进制,返回m*1
3.参考代码:
官网:https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
np.mat():https://www.jb51.net/article/161915.htm
https://blog.csdn.net/yeler082/article/details/90342438
np.mean:https://blog.csdn.net/lilong117194/article/details/78397329