[BZOJ4016][FJOI2014]最短路径树问题
[BZOJ4016][FJOI2014]最短路径树问题
试题描述
给一个包含n个点,m条边的无向连通图。从顶点1出发,往其余所有点分别走一次并返回。
往某一个点走时,选择总长度最短的路径走。若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径(如路径A为1,32,11,路径B为1,3,2,11,路径B字典序较小。注意是序列的字典序的最小,而非路径中节点编号相连的字符串字典序最小)。到达该点后按原路返回,然后往其他点走,直到所有点都走过。
可以知道,经过的边会构成一棵最短路径树。请问,在这棵最短路径树上,最长的包含K个点的简单路径长度为多长?长度为该最长长度的不同路径有多少条?
这里的简单路径是指:对于一个点最多只经过一次的路径。不同路径是指路径两端端点至少有一个不同,点A到点B的路径和点B到点A视为同一条路径。
输入
第一行输入三个正整数n,m,K,表示有n个点m条边,要求的路径需要经过K个点。接下来输入m行,每行三个正整数Ai,Bi,Ci(1<=Ai,Bi<=n,1<=Ci<=10000),表示Ai和Bi间有一条长度为Ci的边。数据保证输入的是连通的无向图。
输出
输出一行两个整数,以一个空格隔开,第一个整数表示包含K个点的路径最长为多长,第二个整数表示这样的不同的最长路径有多少条。
输入示例
6 6 4 1 2 1 2 3 1 3 4 1 2 5 1 3 6 1 5 6 1
输出示例
3 4
数据规模及约定
对于所有数据n<=30000,m<=60000,2<=K<=n。数据保证最短路径树上至少存在一条长度为K的路径。
题解
对于每一个点的出边按照目标点编号从小到大排序,跑一边 Dijkstra,构造出树,再套点分治。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cctype> #include <cstring> #include <algorithm> #include <queue> #include <vector> using namespace std; int read() { int x = 0, f = 1; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); } return x * f; } #define maxn 30010 #define maxm 60010 #define oo 2147483647 int n, m, M, K; struct Edge { int v, w; Edge() {} Edge(int _, int __): v(_), w(__) {} bool operator < (const Edge& t) const { return v < t.v; } } ; vector <Edge> E[maxn]; bool vis[maxn]; int d[maxn], fa[maxn], fad[maxn]; struct Node { int u, d; Node() {} Node(int _, int __): u(_), d(__) {} bool operator < (const Node& t) const { return d > t.d; } } ; priority_queue <Node> Q; void Dijkstra() { for(int i = 1; i <= n; i++) d[i] = oo; d[1] = 0; Q.push(Node(1, 0)); while(!Q.empty()) { int u = Q.top().u; Q.pop(); if(vis[u]) continue; vis[u] = 1; for(int i = 0; i < E[u].size(); i++) if(d[E[u][i].v] > d[u] + E[u][i].w) { d[E[u][i].v] = d[u] + E[u][i].w; fa[E[u][i].v] = u; fad[E[u][i].v] = E[u][i].w; if(!vis[E[u][i].v]) Q.push(Node(E[u][i].v, d[E[u][i].v])); } } return ; } int head[maxn], to[maxm], next[maxm], dist[maxm]; void AddEdge(int a, int b, int c) { to[++m] = b; dist[m] = c; next[m] = head[a]; head[a] = m; swap(a, b); to[++m] = b; dist[m] = c; next[m] = head[a]; head[a] = m; return ; } int root, size, siz[maxn], f[maxn], ans, ansc; void getroot(int u, int pa) { siz[u] = 1; f[u] = 0; for(int e = head[u]; e; e = next[e]) if(!vis[to[e]] && to[e] != pa) { getroot(to[e], u); siz[u] += siz[to[e]]; f[u] = max(f[u], siz[to[e]]); } f[u] = max(f[u], size - siz[u]); if(f[u] < f[root]) root = u; return ; } int A[maxn], Ac[maxn], B[maxn], Bc[maxn], mxd; void dfs(int u, int d, int dep, int pa) { mxd = max(mxd, dep); // printf("XXX: %d %d %d\n", u, d, dep); if(!Ac[dep] || A[dep] < d) A[dep] = d, Ac[dep] = 1; else if(A[dep] == d) Ac[dep]++; for(int e = head[u]; e; e = next[e]) if(!vis[to[e]] && to[e] != pa) dfs(to[e], d + dist[e], dep + 1, u); return ; } void solve(int u) { // printf("u: %d\n", u); vis[u] = 1; int Mxd = 0; for(int e = head[u]; e; e = next[e]) if(!vis[to[e]]) { mxd = 0; dfs(to[e], dist[e], 1, u); Mxd = max(Mxd, mxd); Ac[0] = Bc[0] = 1; // for(int i = 1; i <= mxd; i++) printf("here: %d(%d) ", A[i], Ac[i]); putchar('\n'); for(int i = 1; i <= min(K, mxd); i++) if(!ansc || ans < A[i] + B[K-i]) ans = A[i] + B[K-i], ansc = Ac[i] * Bc[K-i]; else if(ans == A[i] + B[K-i]) ansc += Ac[i] * Bc[K-i]; for(int i = 1; i <= mxd; i++) { if(!Bc[i] || B[i] < A[i]) B[i] = A[i], Bc[i] = Ac[i]; else if(B[i] == A[i]) Bc[i] += Ac[i]; A[i] = Ac[i] = 0; } } for(int i = 1; i <= Mxd; i++) B[i] = Bc[i] = 0; for(int e = head[u]; e; e = next[e]) if(!vis[to[e]]) { root = 0; f[0] = n + 1; size = siz[u]; getroot(to[e], u); solve(root); } return ; } int main() { n = read(); M = read(); K = read() - 1; for(int i = 1; i <= M; i++) { int a = read(), b = read(), c = read(); E[a].push_back(Edge(b, c)); E[b].push_back(Edge(a, c)); } for(int i = 1; i <= n; i++) sort(E[i].begin(), E[i].end()); Dijkstra(); for(int i = 2; i <= n; i++) AddEdge(i, fa[i], fad[i]); // for(int i = 1; i <= n; i++) printf("%d ", fa[i]); putchar('\n'); memset(vis, 0, sizeof(vis)); root = 0; f[0] = n + 1; size = n; getroot(1, 0); solve(root); printf("%d %d\n", ans, ansc); return 0; }
简直是强行乱套