[POJ1050]To the Max
[POJ1050]To the Max
试题描述
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
输入
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
输出
Output the sum of the maximal sub-rectangle.
输入示例
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
输出示例
15
数据规模及约定
见“输入”
题解
预处理前缀和,然后 O(n4) 大暴力。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <stack> #include <vector> #include <queue> #include <cstring> #include <string> #include <map> #include <set> using namespace std; const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } int read() { int x = 0, f = 1; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); } return x * f; } #define maxn 110 int n, S[maxn][maxn]; int main() { n = read(); for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) S[i][j] = S[i-1][j] + S[i][j-1] - S[i-1][j-1] + read(); int ans = 0; for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) for(int x = i; x <= n; x++) for(int y = j; y <= n; y++) { ans = max(ans, S[x][y] - S[i-1][y] - S[x][j-1] + S[i-1][j-1]); } printf("%d\n", ans); return 0; }