[BZOJ2179]FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶
试题描述
给出两个n位10进制整数x和y,你需要计算x*y。
输入
第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。
输出
输出一行,即x*y的结果。
输入示例
1 3 4
输出示例
12
数据规模及约定
n<=60000
题解
可以把一个数看成一个多项式,乘起来之后处理一下进位即可。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <stack> #include <vector> #include <queue> #include <cstring> #include <string> #include <map> #include <set> using namespace std; const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } int read() { int x = 0, f = 1; char c = Getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); } return x * f; } #define maxn 240010 const double pi = acos(-1.0); int n; struct Complex { double a, b; Complex operator + (const Complex& t) { Complex ans; ans.a = a + t.a; ans.b = b + t.b; return ans; } Complex operator - (const Complex& t) { Complex ans; ans.a = a - t.a; ans.b = b - t.b; return ans; } Complex operator * (const Complex& t) { Complex ans; ans.a = a * t.a - b * t.b; ans.b = a * t.b + b * t.a; return ans; } Complex operator *= (const Complex& t) { *this = *this * t; return *this; } } a[maxn], b[maxn]; char A[(maxn>>2)+10], B[(maxn>>2)+10]; int Ord[maxn], num[maxn]; void FFT(Complex* x, int n, int tp) { for(int i = 0; i < n; i++) if(i < Ord[i]) swap(x[i], x[Ord[i]]); for(int i = 1; i < n; i <<= 1) { Complex wn, w; wn.a = cos(pi / i); wn.b = tp * sin(pi / i); for(int j = 0; j < n; j += (i << 1)) { w.a = 1.0; w.b = 0.0; for(int k = 0; k < i; k++) { Complex t1 = x[j+k], t2 = w * x[j+k+i]; x[j+k] = t1 + t2; x[j+k+i] = t1 - t2; w *= wn; } } } return ; } int main() { n = read(); char tc = Getchar(); while(!isdigit(tc)) tc = Getchar(); for(int i = 0; i < n; i++) A[i] = tc, tc = Getchar(); while(!isdigit(tc)) tc = Getchar(); for(int i = 0; i < n; i++) { B[i] = tc; if(i < n - 1) tc = Getchar(); } for(int i = n - 1; i >= 0; i--) { a[n-1-i].a = (double)(A[i] - '0'); a[i].b = 0.0; b[n-1-i].a = (double)(B[i] - '0'); b[i].b = 0.0; } int m = (n - 1) * 2, L = 0; for(n = 1; n <= m; n <<= 1) L++; for(int i = 0; i < n; i++) Ord[i] = (Ord[i>>1] >> 1) | ((i & 1) << L - 1); FFT(a, n, 1); FFT(b, n, 1); for(int i = 0; i <= n; i++) a[i] *= b[i]; FFT(a, n, -1); for(int i = 0; i <= n; i++) { int x = (int)(a[i].a / n + .5); num[i] += x; num[i+1] += num[i] / 10; num[i] %= 10; } int i = n; for(; !num[i]; i--) ; for(; i >= 0; i--) putchar(num[i] + '0'); putchar('\n'); return 0; }