8-2 【Python0026】图书评论数据分析与可视化
分数 10
作者 doublebest
单位 石家庄铁道大学

【题目描述】豆瓣图书评论数据爬取。以《平凡的世界》、《都挺好》等为分析对象,编写程序爬取豆瓣读书上针对该图书的短评信息,要求:

(1)对前3页短评信息进行跨页连续爬取;

(2)爬取的数据包含用户名、短评内容、评论时间、评分和点赞数(有用数);

(3)能够根据选择的排序方式(热门或最新)进行爬取,并分别针对热门和最新排序,输出前10位短评信息(包括用户名、短评内容、评论时间、评分和点赞数)。

(4)根据点赞数的多少,按照从多到少的顺序将排名前10位的短评信息输出;

(5附加)结合中文分词和词云生成,对前3页的短评内容进行文本分析:按照词语出现的次数从高到低排序,输出前10位排序结果;并生成一个属于自己的词云图形。

【练习要求】请给出源代码程序和运行测试结果,源代码程序要求添加必要的注释。

 

import re

 

from collections import Counter

 

import requests

 

from lxml import etree

 

import pandas as pd

 

import jieba

 

import matplotlib.pyplot as plt

 

from wordcloud import WordCloud

 

headers = {

 

```

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.39"

```

 

}

 

comments = \[\]

 

words = \[\]

 

def regex_change(line):

 

```

# 前缀的正则

 

username_regex = re.compile(r"^\\d+::")

 

# URL,为了防止对中文的过滤,所以使用\[a-zA-Z0-9\]而不是\\w

 

url_regex = re.compile(r"""

 

(https?://)?

 

(\[a-zA-Z0-9\]+)

 

(\\.\[a-zA-Z0-9\]+)

 

(\\.\[a-zA-Z0-9\]+)\*

 

(/\[a-zA-Z0-9\]+)\*

 

""", re.VERBOSE | re.IGNORECASE)

 

# 剔除日期

 

data_regex = re.compile(u""" #utf-8编码

 

年 |

 

月 |

 

日 |

 

(周一) |

 

(周二) |

 

(周三) |

 

(周四) |

 

(周五) |

 

(周六)

 

""", re.VERBOSE)

 

# 剔除所有数字

 

decimal_regex = re.compile(r"\[^a-zA-Z\]\\d+")

 

# 剔除空格

 

space_regex = re.compile(r"\\s+")

 

regEx = "\[\\n”“|,,;;''/?! 。的了是\]" # 去除字符串中的换行符、中文冒号、|,需要去除什么字符就在里面写什么字符

 

line = re.sub(regEx, "", line)

 

line = username_regex.sub(r"", line)

 

line = url_regex.sub(r"", line)

 

line = data_regex.sub(r"", line)

 

line = decimal_regex.sub(r"", line)

 

line = space_regex.sub(r"", line)

 

return line

```

 

def getComments(url):

 

```

score = 0

 

resp = requests.get(url, headers=headers).text

 

html = etree.HTML(resp)

 

comment_list = html.xpath(".//div\[@class='comment'\]")

 

for comment in comment_list:

 

status = ""

 

name = comment.xpath(".//span\[@class='comment-info'\]/a/text()")\[0\] # 用户名

 

content = comment.xpath(".//p\[@class='comment-content'\]/span\[@class='short'\]/text()")\[0\] # 短评内容

 

content = str(content).strip()

 

word = jieba.cut(content, cut_all=False, HMM=False)

 

time = comment.xpath(".//span\[@class='comment-info'\]/a/text()")\[1\] # 评论时间

 

mark = comment.xpath(".//span\[@class='comment-info'\]/span/@title") # 评分

 

if len(mark) == 0:

 

score = 0

 

else:

 

for i in mark:

 

status = str(i)

 

if status == "力荐":

 

score = 5

 

elif status == "推荐":

 

score = 4

 

elif status == "还行":

 

score = 3

 

elif status == "较差":

 

score = 2

 

elif status == "很差":

 

score = 1

 

good = comment.xpath(".//span\[@class='comment-vote'\]/span\[@class='vote-count'\]/text()")\[0\] # 点赞数(有用数)

 

comments.append(\[str(name), content, str(time), score, int(good)\])

 

for i in word:

 

if len(regex_change(i)) >= 2:

 

words.append(regex_change(i))

```

 

def getWordCloud(words):

 

```

# 生成词云

 

all_words = \[\]

 

all_words += \[word for word in words\]

 

dict_words = dict(Counter(all_words))

 

bow_words = sorted(dict_words.items(), key=lambda d: d\[1\], reverse=True)

 

print("热词前10位:")

 

for i in range(10):

 

print(bow_words\[i\])

 

text = ' '.join(words)

 

w = WordCloud(background_color='white',

 

width=1000,

 

height=700,

 

font_path='simhei.ttf',

 

margin=10).generate(text)

 

plt.show()

 

plt.imshow(w)

 

w.to_file('wordcloud.png')

```

 

print("请选择以下选项:")

 

print(" 1.热门评论")

 

print(" 2.最新评论")

 

info = int(input())

 

print("前10位短评信息:")

 

title = \['用户名', '短评内容', '评论时间', '评分', '点赞数'\]

 

if info == 1:

 

```

comments = \[\]

 

words = \[\]

 

for i in range(0, 60, 20):

 

url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=new_score".format(

 

i) # 前3页短评信息(热门)

 

getComments(url)

 

df = pd.DataFrame(comments, columns=title)

 

print(df.head(10))

 

print("点赞数前10位的短评信息:")

 

df = df.sort_values(by='点赞数', ascending=False)

 

print(df.head(10))

 

getWordCloud(words)

```

 

elif info == 2:

 

```

comments = \[\]

 

words=\[\]

 

for i in range(0, 60, 20):

 

url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=time".format(

 

i) # 前3页短评<br>

 

getComments(url)

```

 

df = pd.DataFrame(comments, columns=title)

 

print(df.head(10))

 

print("点赞数前10位的短评信息:")

 

df = df.sort_values(by='点赞数', ascending=False)

 

print(df.head(10))

 

getWordCloud(words)

代码量进行 250行

困难词云图的生成报错,引用库错误