Elasticsearch

本篇文章引用B站狂神老师的文章https://www.kuangstudy.com/bbs/1354069127022583809

一、Elasticsearch概述

一个分布式、高扩展、高实时的搜索与数据分析引擎

Lucenne 是一套信息检索引擎!jar包!不包含搜索引擎系统

包含的:索引结构!读写索引的工具!排序,搜索规则……工具类!

Elasticsearch是基于Lucene 做了一些封装和增强

Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它能很方便的使大量数据具有搜索、分析和探索的能力。充分利用Elasticsearch的水平伸缩性,能使数据在生产环境变得更有价值。Elasticsearch 的实现原理主要分为以下几个步骤,首先用户将数据提交到Elasticsearch 数据库中,再通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据,当用户搜索数据时候,再根据权重将结果排名,打分,再将返回结果呈现给用户。

Elasticsearch是与名为Logstash的数据收集和日志解析引擎以及名为Kibana的分析和可视化平台一起开发的。这三个产品被设计成一个集成解决方案,称为“Elastic Stack”(以前称为“ELK stack”)。

Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。Elasticsearch是分布式的,这意味着索引可以被分成分片,每个分片可以有0个或多个副本。每个节点托管一个或多个分片,并充当协调器将操作委托给正确的分片。再平衡和路由是自动完成的。相关数据通常存储在同一个索引中,该索引由一个或多个主分片和零个或多个复制分片组成。一旦创建了索引,就不能更改主分片的数量。

Elasticsearch使用Lucene,并试图通过JSON和Java API提供其所有特性。它支持facetting和percolating,如果新文档与注册查询匹配,这对于通知非常有用。另一个特性称为“网关”,处理索引的长期持久性;例如,在服务器崩溃的情况下,可以从网关恢复索引。Elasticsearch支持实时GET请求,适合作为NoSQL数据存储,但缺少分布式事务。

二、Elasticsearch与Solr对比

Elasticsearch的优缺点:

优点

Elasticsearch是分布式的。不需要其他组件,分发是实时的,被叫做”Push replication”。

Elasticsearch 完全支持 Apache Lucene 的接近实时的搜索。

处理多租户不需要特殊配置,而Solr则需要更多的高级设置。

Elasticsearch 采用 Gateway 的概念,使得完备份更加简单。

各节点组成对等的网络结构,某些节点出现故障时会自动分配其他节点代替其进行工作。

缺点

只有一名开发者(当前Elasticsearch GitHub组织已经不只如此,已经有了相当活跃的维护者)

还不够自动(不适合当前新的Index Warmup API)

Solr

Solr(读作“solar”)是Apache Lucene项目的开源企业搜索平台。其主要功能包括全文检索、命中标示、分面搜索、动态聚类、数据库集成,以及富文本(如Word、PDF)的处理。Solr是高度可扩展的,并提供了分布式搜索和索引复制。Solr是最流行的企业级搜索引擎,Solr4 还增加了NoSQL支持。

Solr是用Java编写、运行在Servlet容器(如 Apache Tomcat 或Jetty)的一个独立的全文搜索服务器。 Solr采用了 Lucene Java 搜索库为核心的全文索引和搜索,并具有类似REST的HTTP/XML和JSON的API。Solr强大的外部配置功能使得无需进行Java编码,便可对 其进行调整以适应多种类型的应用程序。Solr有一个插件架构,以支持更多的高级定制。

因为2010年 Apache Lucene 和 Apache Solr 项目合并,两个项目是由同一个Apache软件基金会开发团队制作实现的。提到技术或产品时,Lucene/Solr或Solr/Lucene是一样的。

Solr的优缺点

优点

Solr有一个更大、更成熟的用户、开发和贡献者社区。

支持添加多种格式的索引,如:HTML、PDF、微软 Office 系列软件格式以及 JSON、XML、CSV 等纯文本格式。

Solr比较成熟、稳定。

不考虑建索引的同时进行搜索,速度更快。

缺点

建立索引时,搜索效率下降,实时索引搜索效率不高。

Elasticsearch与Solr的比较

img

当单纯的对已有数据进行搜索时,Solr更快

当实时建立索引时, Solr会产生io阻塞,查询性能较差 。

img

实时建立索引 Elasticsearch具有明显的优势

随着数据量的增加,Solr的搜索效率会变得更低,而Elasticsearch却没有明显的变化。

img

随数据量的增加 搜索效率会变得更低

综上所述,Solr的架构不适合实时搜索的应用。

实际生产环境测试

下图为将搜索引擎从Solr转到Elasticsearch以后的平均查询速度有了50倍的提升。

img

Elasticsearch与Solr的比较总结:

二者安装都很简单;

Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能;

Solr 支持更多格式的数据,而 Elasticsearch 仅支持json文件格式;

Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供;

Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch。

Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。

其他基于Lucene的开源搜索引擎解决方案

直接使用Lucene

说明:Lucene 是一个 JAVA 搜索类库,它本身并不是一个完整的解决方案,需要额外的开发工作。

优点:成熟的解决方案,有很多的成功案例。apache 顶级项目,正在持续快速的进步。庞大而活跃的开发社区,大量的开发人员。它只是一个类库,有足够的定制和优化空间:经过简单定制,就可以满足绝大部分常见的需求;经过优化,可以支持 10亿+ 量级的搜索。

缺点:需要额外的开发工作。所有的扩展,分布式,可靠性等都需要自己实现;非实时,从建索引到可以搜索中间有一个时间延迟,而当前的“近实时”(Lucene Near Real Time search)搜索方案的可扩展性有待进一步完善

三、Elasticsearch安装

官网下载https://www.elastic.co/cn/elasticsearch/

image

把配置文件的xpack.security.enabled改为false

运行:

image

安装可视化环境

地址:https://github.com/mobz/elasticsearch-head

下载后

npm install
npm run start

解决跨域问题

Elasticsearch配置文件中添加

http.cors.enabled: true
http.cors.allow-origin: "*"
http.cors.allow-headers: Authorization,X-Requested-With,Content-Length,Content-Type

image

四、ELK

ELK是Elasticsearch、Logstash、Kibana三大开源框架首字母大写简称(但是后期出现的filebeat(beats中的一种)可以用来替代logstash的数据收集功能,比较轻量级)。市面上也被成为Elastic Stack。

  Filebeat是用于转发和集中日志数据的轻量级传送工具。Filebeat监视您指定的日志文件或位置,收集日志事件,并将它们转发到Elasticsearch或 Logstash进行索引。Filebeat的工作方式如下:启动Filebeat时,它将启动一个或多个输入,这些输入将在为日志数据指定的位置中查找。对于Filebeat所找到的每个日志,Filebeat都会启动收集器。每个收集器都读取单个日志以获取新内容,并将新日志数据发送到libbeat,libbeat将聚集事件,并将聚集的数据发送到为Filebeat配置的输出。

  Logstash是免费且开放的服务器端数据处理管道,能够从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中。Logstash能够动态地采集、转换和传输数据,不受格式或复杂度的影响。利用Grok从非结构化数据中派生出结构,从IP地址解码出地理坐标,匿名化或排除敏感字段,并简化整体处理过程。

  Elasticsearch是Elastic Stack核心的分布式搜索和分析引擎,是一个基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架。Elasticsearch为所有类型的数据提供近乎实时的搜索和分析。无论您是结构化文本还是非结构化文本,数字数据或地理空间数据,Elasticsearch都能以支持快速搜索的方式有效地对其进行存储和索引。

  Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索、查看交互存储在Elasticsearch索引中的数据。使用Kibana,可以通过各种图表进行高级数据分析及展示。并且可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以汇总、分析和搜索重要数据日志。还可以让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板(dashboard)实时显示Elasticsearch查询动态

安装Kibana https://www.elastic.co/cn/kibana/

image

启动

image

如果要设置中文的话,在kibana的配置文件的末尾加上

i18n.locale: "zh-CN"

五、ES核心概念

集群,节点,索引,类型,文档,分片,映射是什么?

Elasticsearch是面向文档 关系型数据库和Elasticsearch客观的对比! 一切都是JSON

Relational DB Elasticsearch
数据库(database) 索引(indices)
表(tables) types(慢慢会被弃用)
行(rows) documents
字段(columns) fields

elasticsearch(集群)中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包 含多 个文档(行),每个文档中又包含多个字段(列)

物理设计: elasticsearch 在后台把每个索引划分成多个分片,每分分片可以在集群中的不同服务器间迁移

逻辑设计: 一个索引类型中,包含多个文档,比如说文档1,文档2。 当我们索引一篇文档时,可以通过这样的一各 顺序找到 它: 索引 ▷ 类型 ▷ 文档ID ,通过这个组合我们就能索引到某个具体的文档。而types这一概念正在被逐步淘汰

文档(document)

文档这一概念是ES中最小的单位,因此ES称为面向文档。一个文档中会包含多个字段,ES中的字段是非常灵活的,文档中的字段可以被随意的新增或忽略。

映射类型(mapping)

类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。 类型中对于字段的定义称为映射(mapping),比如 name 字段映射为字符串类型。在新增一个字段时可以不用规定字段类型,ES会自动的将新字段加入映射,ES会自己判断这个字段的类型,如果这个值是18,那么ES会认为它是整形。 但是ES也可能猜不对, 所以最安全的方式就是提前定义好所需要的映射,先定义好字段,然后再使用,万事大吉。

ES中常用的字段类型如下

  • 字符串类型 text 、 keyword
  • 数值类型 long, integer, short, byte, double, float, half_float, scaled_float
  • 日期类型 date
  • 布尔值类型 boolean
  • 二进制 binary
  • 等等…

索引(indicies)

ES中的索引可以视作一个巨大的文档集合,存储了映射类型的字段和其他设置,然后被存储到各个分片上。

物理设计 :节点和分片

一个集群至少有一个节点,而一个节点就是一个ES进程,节点可以有多个索引默认的,如果你创建索引,那么索引将会有个5个分片 ( primary shard ,又称主分片 ) 构成的,每一个主分片会有一个副本 ( replica shard ,又称复制分片 ) img

上图是一个有3个节点的集群,可以看到主分片和对应的复制分片都不会在同一个节点内,这样有利于某 个节点挂掉 了,数据也不至于丢失。 实际上,一个分片是一个Lucene索引,一个包含倒排索引的文件 目录,倒排索引的结构使 得ES在不扫描全部文档的情况下,就能告诉你哪些文档包含特定的 关键字。

倒排索引

ES使用的是一种称为倒排索引的结构,采用Lucene倒排索作为底层。这种结构适用于快速的 全文搜索, 一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。 例 如,现在有两个文档, 每个文档包含如下内容:

Study every day, good good up to forever # 文档1包含的内容
To forever, study every day, good good up # 文档2包含的内容

为了创建倒排索引,我们首先要将每个文档拆分成独立的词(或称为词条或者tokens),然后创建一个包含所有不重复的词条的排序列表,然后列出每个词条出现在哪个文档 img

现在,我们试图搜索 to forever,只需要查看包含每个词条的文档 img

两个文档都匹配,但是第一个文档比第二个匹配程度更高。如果没有别的条件,现在,这两个包含关键字的文档都将返回。相比之下doc_1的匹配程度更高,如果在不加任何排序条件的情况下默认会排在doc_2之前。

六、IK分词器

下载https://github.com/medcl/elasticsearch-analysis-ik/releases

然后放到插件目录,注意版本一致,可以下载一样版本,不行的话修改插件的配置文件

测试

  • ik_smart
    • 会做最粗粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为中华人民共和国、人民大会堂。
  • Ik_max_word
    • 会将文本做最细粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为“中华人民共和国、中华人民、中华、华人、人民共和国、人民、共和国、大会堂、大会、会堂等词语。

image

添加自己的字典

![image-20221010214845063](/Users/stone/Library/Application Support/typora-user-images/image-20221010214845063.png)

把自己写的dic字典文件放入下面代码中

<entry key="ext_dict"></entry>

七、Rest风格

基本Rest命令说明:

method url地址 描述
PUT(创建,修改) localhost:9200/索引名称/类型名称/文档id 创建文档(指定文档id)
POST(创建) localhost:9200/索引名称/类型名称 创建文档(随机文档id)
POST(修改) localhost:9200/索引名称/类型名称/文档id/_update 修改文档
DELETE(删除) localhost:9200/索引名称/类型名称/文档id 删除文档
GET(查询) localhost:9200/索引名称/类型名称/文档id 查询文档通过文档ID
POST(查询) localhost:9200/索引名称/类型名称/文档id/_search 查询所有数据

八、索引的基本操作

测试添加索引

image
image

![image-20221010223913993](/Users/stone/Library/Application Support/typora-user-images/image-20221010223913993.png)

GET _cat可以获取当前ed的很多信息

GET _cat/indices
GET _cat/aliases
GET _cat/allocation
GET _cat/count
GET _cat/fielddata
GET _cat/health
GET _cat/indices
GET _cat/master
GET _cat/nodeattrs
GET _cat/nodes
GET _cat/pending_tasks
GET _cat/plugins
GET _cat/recovery
GET _cat/repositories
GET _cat/segments
GET _cat/shards
GET _cat/snapshots
GET _cat/tasks
GET _cat/templates
GET _cat/thread_pool

image

更新

POST /test1/_update/1/
{
  "doc":{
    "name":"肖肖"
  }
}

删除

GET /test1
DELETE /test1

九、文档的基本操作【重点】

1、基本操作

2、复杂操作

十、集成SpringBoot

十一、京东实战

posted @   项sir  阅读(131)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 字符编码:从基础到乱码解决
· 提示词工程——AI应用必不可少的技术
XIANGSIR
点击右上角即可分享
微信分享提示