摘要: 交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize),交叉验证一般要尽量满足:1)训练集的比例要足够多,一般大于一半2)训练集和测试集要均匀抽样交叉验证主要分成以下几类:1)k-folder cross-validation:k个子集,每个子集均做一次测试集,其余的作为训练集。交叉验证重复k次,每 阅读全文
posted @ 2011-11-26 10:01 hailong 阅读(6957) 评论(0) 推荐(0) 编辑