libev代码
就是贴上来:
ev.c:
/* * libev event processing core, watcher management */ /* this big block deduces configuration from config.h */ #ifndef EV_STANDALONE # ifdef EV_CONFIG_H # include EV_CONFIG_H # else # include "config.h" # endif #if HAVE_FLOOR # ifndef EV_USE_FLOOR # define EV_USE_FLOOR 1 # endif #endif # if HAVE_CLOCK_SYSCALL # ifndef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 1 # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # endif # endif # elif !defined EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 # endif # if HAVE_CLOCK_GETTIME # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # else # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # endif # if HAVE_NANOSLEEP # ifndef EV_USE_NANOSLEEP # define EV_USE_NANOSLEEP EV_FEATURE_OS # endif # else # undef EV_USE_NANOSLEEP # define EV_USE_NANOSLEEP 0 # endif # if HAVE_SELECT && HAVE_SYS_SELECT_H # ifndef EV_USE_SELECT # define EV_USE_SELECT EV_FEATURE_BACKENDS # endif # else # undef EV_USE_SELECT # define EV_USE_SELECT 0 # endif # if HAVE_POLL && HAVE_POLL_H # ifndef EV_USE_POLL # define EV_USE_POLL EV_FEATURE_BACKENDS # endif # else # undef EV_USE_POLL # define EV_USE_POLL 0 # endif # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H # ifndef EV_USE_EPOLL # define EV_USE_EPOLL EV_FEATURE_BACKENDS # endif # else # undef EV_USE_EPOLL # define EV_USE_EPOLL 0 # endif # if HAVE_KQUEUE && HAVE_SYS_EVENT_H # ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE EV_FEATURE_BACKENDS # endif # else # undef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 # endif # if HAVE_PORT_H && HAVE_PORT_CREATE # ifndef EV_USE_PORT # define EV_USE_PORT EV_FEATURE_BACKENDS # endif # else # undef EV_USE_PORT # define EV_USE_PORT 0 # endif # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H # ifndef EV_USE_INOTIFY # define EV_USE_INOTIFY EV_FEATURE_OS # endif # else # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 # endif # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H # ifndef EV_USE_SIGNALFD # define EV_USE_SIGNALFD EV_FEATURE_OS # endif # else # undef EV_USE_SIGNALFD # define EV_USE_SIGNALFD 0 # endif # if HAVE_EVENTFD # ifndef EV_USE_EVENTFD # define EV_USE_EVENTFD EV_FEATURE_OS # endif # else # undef EV_USE_EVENTFD # define EV_USE_EVENTFD 0 # endif #endif #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <stddef.h> #include <stdio.h> #include <assert.h> #include <errno.h> #include <sys/types.h> #include <time.h> #include <limits.h> #include <signal.h> #ifdef EV_H # include EV_H #else # include "ev.h" #endif #if EV_NO_THREADS # undef EV_NO_SMP # define EV_NO_SMP 1 # undef ECB_NO_THREADS # define ECB_NO_THREADS 1 #endif #if EV_NO_SMP # undef EV_NO_SMP # define ECB_NO_SMP 1 #endif #ifndef _WIN32 # include <sys/time.h> # include <sys/wait.h> # include <unistd.h> #else # include <io.h> # define WIN32_LEAN_AND_MEAN # include <winsock2.h> # include <windows.h> # ifndef EV_SELECT_IS_WINSOCKET # define EV_SELECT_IS_WINSOCKET 1 # endif # undef EV_AVOID_STDIO #endif /* OS X, in its infinite idiocy, actually HARDCODES * a limit of 1024 into their select. Where people have brains, * OS X engineers apparently have a vacuum. Or maybe they were * ordered to have a vacuum, or they do anything for money. * This might help. Or not. */ #define _DARWIN_UNLIMITED_SELECT 1 /* this block tries to deduce configuration from header-defined symbols and defaults */ /* try to deduce the maximum number of signals on this platform */ #if defined EV_NSIG /* use what's provided */ #elif defined NSIG # define EV_NSIG (NSIG) #elif defined _NSIG # define EV_NSIG (_NSIG) #elif defined SIGMAX # define EV_NSIG (SIGMAX+1) #elif defined SIG_MAX # define EV_NSIG (SIG_MAX+1) #elif defined _SIG_MAX # define EV_NSIG (_SIG_MAX+1) #elif defined MAXSIG # define EV_NSIG (MAXSIG+1) #elif defined MAX_SIG # define EV_NSIG (MAX_SIG+1) #elif defined SIGARRAYSIZE # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */ #elif defined _sys_nsig # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */ #else # error "unable to find value for NSIG, please report" /* to make it compile regardless, just remove the above line, */ /* but consider reporting it, too! :) */ # define EV_NSIG 65 #endif #ifndef EV_USE_FLOOR # define EV_USE_FLOOR 0 #endif #ifndef EV_USE_CLOCK_SYSCALL # if __linux && __GLIBC__ >= 2 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS # else # define EV_USE_CLOCK_SYSCALL 0 # endif #endif #ifndef EV_USE_MONOTONIC # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0 # define EV_USE_MONOTONIC EV_FEATURE_OS # else # define EV_USE_MONOTONIC 0 # endif #endif #ifndef EV_USE_REALTIME # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL #endif #ifndef EV_USE_NANOSLEEP # if _POSIX_C_SOURCE >= 199309L # define EV_USE_NANOSLEEP EV_FEATURE_OS # else # define EV_USE_NANOSLEEP 0 # endif #endif #ifndef EV_USE_SELECT # define EV_USE_SELECT EV_FEATURE_BACKENDS #endif #ifndef EV_USE_POLL # ifdef _WIN32 # define EV_USE_POLL 0 # else # define EV_USE_POLL EV_FEATURE_BACKENDS # endif #endif #ifndef EV_USE_EPOLL # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_EPOLL EV_FEATURE_BACKENDS # else # define EV_USE_EPOLL 0 # endif #endif #ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 #endif #ifndef EV_USE_PORT # define EV_USE_PORT 0 #endif #ifndef EV_USE_INOTIFY # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_INOTIFY EV_FEATURE_OS # else # define EV_USE_INOTIFY 0 # endif #endif #ifndef EV_PID_HASHSIZE # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1 #endif #ifndef EV_INOTIFY_HASHSIZE # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1 #endif #ifndef EV_USE_EVENTFD # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) # define EV_USE_EVENTFD EV_FEATURE_OS # else # define EV_USE_EVENTFD 0 # endif #endif #ifndef EV_USE_SIGNALFD # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) # define EV_USE_SIGNALFD EV_FEATURE_OS # else # define EV_USE_SIGNALFD 0 # endif #endif #if 0 /* debugging */ # define EV_VERIFY 3 # define EV_USE_4HEAP 1 # define EV_HEAP_CACHE_AT 1 #endif #ifndef EV_VERIFY # define EV_VERIFY (EV_FEATURE_API ? 1 : 0) #endif #ifndef EV_USE_4HEAP # define EV_USE_4HEAP EV_FEATURE_DATA #endif #ifndef EV_HEAP_CACHE_AT # define EV_HEAP_CACHE_AT EV_FEATURE_DATA #endif #ifdef ANDROID /* supposedly, android doesn't typedef fd_mask */ # undef EV_USE_SELECT # define EV_USE_SELECT 0 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */ # undef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 #endif /* aix's poll.h seems to cause lots of trouble */ #ifdef _AIX /* AIX has a completely broken poll.h header */ # undef EV_USE_POLL # define EV_USE_POLL 0 #endif /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ /* which makes programs even slower. might work on other unices, too. */ #if EV_USE_CLOCK_SYSCALL # include <sys/syscall.h> # ifdef SYS_clock_gettime # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # else # undef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 # endif #endif /* this block fixes any misconfiguration where we know we run into trouble otherwise */ #ifndef CLOCK_MONOTONIC # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 #endif #ifndef CLOCK_REALTIME # undef EV_USE_REALTIME # define EV_USE_REALTIME 0 #endif #if !EV_STAT_ENABLE # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 #endif #if !EV_USE_NANOSLEEP /* hp-ux has it in sys/time.h, which we unconditionally include above */ # if !defined _WIN32 && !defined __hpux # include <sys/select.h> # endif #endif #if EV_USE_INOTIFY # include <sys/statfs.h> # include <sys/inotify.h> /* some very old inotify.h headers don't have IN_DONT_FOLLOW */ # ifndef IN_DONT_FOLLOW # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 # endif #endif #if EV_USE_EVENTFD /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include <stdint.h> # ifndef EFD_NONBLOCK # define EFD_NONBLOCK O_NONBLOCK # endif # ifndef EFD_CLOEXEC # ifdef O_CLOEXEC # define EFD_CLOEXEC O_CLOEXEC # else # define EFD_CLOEXEC 02000000 # endif # endif EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags); #endif #if EV_USE_SIGNALFD /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include <stdint.h> # ifndef SFD_NONBLOCK # define SFD_NONBLOCK O_NONBLOCK # endif # ifndef SFD_CLOEXEC # ifdef O_CLOEXEC # define SFD_CLOEXEC O_CLOEXEC # else # define SFD_CLOEXEC 02000000 # endif # endif EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags); struct signalfd_siginfo { uint32_t ssi_signo; char pad[128 - sizeof (uint32_t)]; }; #endif /**/ #if EV_VERIFY >= 3 # define EV_FREQUENT_CHECK ev_verify (EV_A) #else # define EV_FREQUENT_CHECK do { } while (0) #endif /* * This is used to work around floating point rounding problems. * This value is good at least till the year 4000. */ #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */ /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */ #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0) #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0) /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */ /* ECB.H BEGIN */ /* * libecb - http://software.schmorp.de/pkg/libecb * * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de> * Copyright (©) 2011 Emanuele Giaquinta * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ECB_H #define ECB_H /* 16 bits major, 16 bits minor */ #define ECB_VERSION 0x00010003 #ifdef _WIN32 typedef signed char int8_t; typedef unsigned char uint8_t; typedef signed short int16_t; typedef unsigned short uint16_t; typedef signed int int32_t; typedef unsigned int uint32_t; #if __GNUC__ typedef signed long long int64_t; typedef unsigned long long uint64_t; #else /* _MSC_VER || __BORLANDC__ */ typedef signed __int64 int64_t; typedef unsigned __int64 uint64_t; #endif #ifdef _WIN64 #define ECB_PTRSIZE 8 typedef uint64_t uintptr_t; typedef int64_t intptr_t; #else #define ECB_PTRSIZE 4 typedef uint32_t uintptr_t; typedef int32_t intptr_t; #endif #else #include <inttypes.h> #if UINTMAX_MAX > 0xffffffffU #define ECB_PTRSIZE 8 #else #define ECB_PTRSIZE 4 #endif #endif /* work around x32 idiocy by defining proper macros */ #if __x86_64 || _M_AMD64 #if __ILP32 #define ECB_AMD64_X32 1 #else #define ECB_AMD64 1 #endif #endif /* many compilers define _GNUC_ to some versions but then only implement * what their idiot authors think are the "more important" extensions, * causing enormous grief in return for some better fake benchmark numbers. * or so. * we try to detect these and simply assume they are not gcc - if they have * an issue with that they should have done it right in the first place. */ #ifndef ECB_GCC_VERSION #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ #define ECB_GCC_VERSION(major,minor) 0 #else #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) #endif #endif #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */ #define ECB_C99 (__STDC_VERSION__ >= 199901L) #define ECB_C11 (__STDC_VERSION__ >= 201112L) #define ECB_CPP (__cplusplus+0) #define ECB_CPP11 (__cplusplus >= 201103L) #if ECB_CPP #define ECB_EXTERN_C extern "C" #define ECB_EXTERN_C_BEG ECB_EXTERN_C { #define ECB_EXTERN_C_END } #else #define ECB_EXTERN_C extern #define ECB_EXTERN_C_BEG #define ECB_EXTERN_C_END #endif /*****************************************************************************/ /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ #if ECB_NO_THREADS #define ECB_NO_SMP 1 #endif #if ECB_NO_SMP #define ECB_MEMORY_FENCE do { } while (0) #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #if __i386 || __i386__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif __amd64 || __amd64__ || __x86_64 || __x86_64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") #elif __sparc || __sparc__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") #elif defined __s390__ || defined __s390x__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") #elif defined __mips__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") #elif defined __alpha__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") #elif defined __hppa__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif defined __ia64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") #endif #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(4,7) /* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) /* The __has_feature syntax from clang is so misdesigned that we cannot use it * without risking compile time errors with other compilers. We *could* * define our own ecb_clang_has_feature, but I just can't be bothered to work * around this shit time and again. * #elif defined __clang && __has_feature (cxx_atomic) * // see comment below (stdatomic.h) about the C11 memory model. * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) */ #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ #define ECB_MEMORY_FENCE __sync_synchronize () #elif _MSC_VER >= 1400 /* VC++ 2005 */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) #define ECB_MEMORY_FENCE _ReadWriteBarrier () #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () #elif defined _WIN32 #include <WinNT.h> #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #include <mbarrier.h> #define ECB_MEMORY_FENCE __machine_rw_barrier () #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () #elif __xlC__ #define ECB_MEMORY_FENCE __sync () #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_C11 && !defined __STDC_NO_ATOMICS__ /* we assume that these memory fences work on all variables/all memory accesses, */ /* not just C11 atomics and atomic accesses */ #include <stdatomic.h> /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ /* any fence other than seq_cst, which isn't very efficient for us. */ /* Why that is, we don't know - either the C11 memory model is quite useless */ /* for most usages, or gcc and clang have a bug */ /* I *currently* lean towards the latter, and inefficiently implement */ /* all three of ecb's fences as a seq_cst fence */ #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) #endif #endif #ifndef ECB_MEMORY_FENCE #if !ECB_AVOID_PTHREADS /* * if you get undefined symbol references to pthread_mutex_lock, * or failure to find pthread.h, then you should implement * the ECB_MEMORY_FENCE operations for your cpu/compiler * OR provide pthread.h and link against the posix thread library * of your system. */ #include <pthread.h> #define ECB_NEEDS_PTHREADS 1 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) #endif #endif #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE #endif #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE #endif /*****************************************************************************/ #if __cplusplus #define ecb_inline static inline #elif ECB_GCC_VERSION(2,5) #define ecb_inline static __inline__ #elif ECB_C99 #define ecb_inline static inline #else #define ecb_inline static #endif #if ECB_GCC_VERSION(3,3) #define ecb_restrict __restrict__ #elif ECB_C99 #define ecb_restrict restrict #else #define ecb_restrict #endif typedef int ecb_bool; #define ECB_CONCAT_(a, b) a ## b #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) #define ECB_STRINGIFY_(a) # a #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) #define ecb_function_ ecb_inline #if ECB_GCC_VERSION(3,1) #define ecb_attribute(attrlist) __attribute__(attrlist) #define ecb_is_constant(expr) __builtin_constant_p (expr) #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) #else #define ecb_attribute(attrlist) #define ecb_is_constant(expr) 0 #define ecb_expect(expr,value) (expr) #define ecb_prefetch(addr,rw,locality) #endif /* no emulation for ecb_decltype */ #if ECB_GCC_VERSION(4,5) #define ecb_decltype(x) __decltype(x) #elif ECB_GCC_VERSION(3,0) #define ecb_decltype(x) __typeof(x) #endif #define ecb_noinline ecb_attribute ((__noinline__)) #define ecb_unused ecb_attribute ((__unused__)) #define ecb_const ecb_attribute ((__const__)) #define ecb_pure ecb_attribute ((__pure__)) #if ECB_C11 #define ecb_noreturn _Noreturn #else #define ecb_noreturn ecb_attribute ((__noreturn__)) #endif #if ECB_GCC_VERSION(4,3) #define ecb_artificial ecb_attribute ((__artificial__)) #define ecb_hot ecb_attribute ((__hot__)) #define ecb_cold ecb_attribute ((__cold__)) #else #define ecb_artificial #define ecb_hot #define ecb_cold #endif /* put around conditional expressions if you are very sure that the */ /* expression is mostly true or mostly false. note that these return */ /* booleans, not the expression. */ #define ecb_expect_false(expr) ecb_expect (!!(expr), 0) #define ecb_expect_true(expr) ecb_expect (!!(expr), 1) /* for compatibility to the rest of the world */ #define ecb_likely(expr) ecb_expect_true (expr) #define ecb_unlikely(expr) ecb_expect_false (expr) /* count trailing zero bits and count # of one bits */ #if ECB_GCC_VERSION(3,4) /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ #define ecb_ld32(x) (__builtin_clz (x) ^ 31) #define ecb_ld64(x) (__builtin_clzll (x) ^ 63) #define ecb_ctz32(x) __builtin_ctz (x) #define ecb_ctz64(x) __builtin_ctzll (x) #define ecb_popcount32(x) __builtin_popcount (x) /* no popcountll */ #else ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const; ecb_function_ int ecb_ctz32 (uint32_t x) { int r = 0; x &= ~x + 1; /* this isolates the lowest bit */ #if ECB_branchless_on_i386 r += !!(x & 0xaaaaaaaa) << 0; r += !!(x & 0xcccccccc) << 1; r += !!(x & 0xf0f0f0f0) << 2; r += !!(x & 0xff00ff00) << 3; r += !!(x & 0xffff0000) << 4; #else if (x & 0xaaaaaaaa) r += 1; if (x & 0xcccccccc) r += 2; if (x & 0xf0f0f0f0) r += 4; if (x & 0xff00ff00) r += 8; if (x & 0xffff0000) r += 16; #endif return r; } ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const; ecb_function_ int ecb_ctz64 (uint64_t x) { int shift = x & 0xffffffffU ? 0 : 32; return ecb_ctz32 (x >> shift) + shift; } ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const; ecb_function_ int ecb_popcount32 (uint32_t x) { x -= (x >> 1) & 0x55555555; x = ((x >> 2) & 0x33333333) + (x & 0x33333333); x = ((x >> 4) + x) & 0x0f0f0f0f; x *= 0x01010101; return x >> 24; } ecb_function_ int ecb_ld32 (uint32_t x) ecb_const; ecb_function_ int ecb_ld32 (uint32_t x) { int r = 0; if (x >> 16) { x >>= 16; r += 16; } if (x >> 8) { x >>= 8; r += 8; } if (x >> 4) { x >>= 4; r += 4; } if (x >> 2) { x >>= 2; r += 2; } if (x >> 1) { r += 1; } return r; } ecb_function_ int ecb_ld64 (uint64_t x) ecb_const; ecb_function_ int ecb_ld64 (uint64_t x) { int r = 0; if (x >> 32) { x >>= 32; r += 32; } return r + ecb_ld32 (x); } #endif ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const; ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const; ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const; ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) { return ( (x * 0x0802U & 0x22110U) | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; } ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const; ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) { x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); x = ( x >> 8 ) | ( x << 8); return x; } ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const; ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) { x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); x = ( x >> 16 ) | ( x << 16); return x; } /* popcount64 is only available on 64 bit cpus as gcc builtin */ /* so for this version we are lazy */ ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const; ecb_function_ int ecb_popcount64 (uint64_t x) { return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); } ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const; ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const; ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const; ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const; ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const; ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const; ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const; ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const; ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } #if ECB_GCC_VERSION(4,3) #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) #define ecb_bswap32(x) __builtin_bswap32 (x) #define ecb_bswap64(x) __builtin_bswap64 (x) #else ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const; ecb_function_ uint16_t ecb_bswap16 (uint16_t x) { return ecb_rotl16 (x, 8); } ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const; ecb_function_ uint32_t ecb_bswap32 (uint32_t x) { return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); } ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const; ecb_function_ uint64_t ecb_bswap64 (uint64_t x) { return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); } #endif #if ECB_GCC_VERSION(4,5) #define ecb_unreachable() __builtin_unreachable () #else /* this seems to work fine, but gcc always emits a warning for it :/ */ ecb_inline void ecb_unreachable (void) ecb_noreturn; ecb_inline void ecb_unreachable (void) { } #endif /* try to tell the compiler that some condition is definitely true */ #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const; ecb_inline unsigned char ecb_byteorder_helper (void) { /* the union code still generates code under pressure in gcc, */ /* but less than using pointers, and always seems to */ /* successfully return a constant. */ /* the reason why we have this horrible preprocessor mess */ /* is to avoid it in all cases, at least on common architectures */ /* or when using a recent enough gcc version (>= 4.6) */ #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64 return 0x44; #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ return 0x44; #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ return 0x11; #else union { uint32_t i; uint8_t c; } u = { 0x11223344 }; return u.c; #endif } ecb_inline ecb_bool ecb_big_endian (void) ecb_const; ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } ecb_inline ecb_bool ecb_little_endian (void) ecb_const; ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } #if ECB_GCC_VERSION(3,0) || ECB_C99 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) #else #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) #endif #if __cplusplus template<typename T> static inline T ecb_div_rd (T val, T div) { return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; } template<typename T> static inline T ecb_div_ru (T val, T div) { return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; } #else #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) #endif #if ecb_cplusplus_does_not_suck /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ template<typename T, int N> static inline int ecb_array_length (const T (&arr)[N]) { return N; } #else #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) #endif /*******************************************************************************/ /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ /* basically, everything uses "ieee pure-endian" floating point numbers */ /* the only noteworthy exception is ancient armle, which uses order 43218765 */ #if 0 \ || __i386 || __i386__ \ || __amd64 || __amd64__ || __x86_64 || __x86_64__ \ || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ || defined __arm__ && defined __ARM_EABI__ \ || defined __s390__ || defined __s390x__ \ || defined __mips__ \ || defined __alpha__ \ || defined __hppa__ \ || defined __ia64__ \ || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 #define ECB_STDFP 1 #include <string.h> /* for memcpy */ #else #define ECB_STDFP 0 #include <math.h> /* for frexp*, ldexp* */ #endif #ifndef ECB_NO_LIBM /* convert a float to ieee single/binary32 */ ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const; ecb_function_ uint32_t ecb_float_to_binary32 (float x) { uint32_t r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* slow emulation, works for anything but -0 */ uint32_t m; int e; if (x == 0e0f ) return 0x00000000U; if (x > +3.40282346638528860e+38f) return 0x7f800000U; if (x < -3.40282346638528860e+38f) return 0xff800000U; if (x != x ) return 0x7fbfffffU; m = frexpf (x, &e) * 0x1000000U; r = m & 0x80000000U; if (r) m = -m; if (e <= -126) { m &= 0xffffffU; m >>= (-125 - e); e = -126; } r |= (e + 126) << 23; r |= m & 0x7fffffU; #endif return r; } /* converts an ieee single/binary32 to a float */ ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const; ecb_function_ float ecb_binary32_to_float (uint32_t x) { float r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 31; int e = (x >> 23) & 0xffU; x &= 0x7fffffU; if (e) x |= 0x800000U; else e = 1; /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ r = ldexpf (x * (0.5f / 0x800000U), e - 126); r = neg ? -r : r; #endif return r; } /* convert a double to ieee double/binary64 */ ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const; ecb_function_ uint64_t ecb_double_to_binary64 (double x) { uint64_t r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* slow emulation, works for anything but -0 */ uint64_t m; int e; if (x == 0e0 ) return 0x0000000000000000U; if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; if (x != x ) return 0X7ff7ffffffffffffU; m = frexp (x, &e) * 0x20000000000000U; r = m & 0x8000000000000000;; if (r) m = -m; if (e <= -1022) { m &= 0x1fffffffffffffU; m >>= (-1021 - e); e = -1022; } r |= ((uint64_t)(e + 1022)) << 52; r |= m & 0xfffffffffffffU; #endif return r; } /* converts an ieee double/binary64 to a double */ ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const; ecb_function_ double ecb_binary64_to_double (uint64_t x) { double r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 63; int e = (x >> 52) & 0x7ffU; x &= 0xfffffffffffffU; if (e) x |= 0x10000000000000U; else e = 1; /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); r = neg ? -r : r; #endif return r; } #endif #endif /* ECB.H END */ #if ECB_MEMORY_FENCE_NEEDS_PTHREADS /* if your architecture doesn't need memory fences, e.g. because it is * single-cpu/core, or if you use libev in a project that doesn't use libev * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling * libev, in which cases the memory fences become nops. * alternatively, you can remove this #error and link against libpthread, * which will then provide the memory fences. */ # error "memory fences not defined for your architecture, please report" #endif #ifndef ECB_MEMORY_FENCE # define ECB_MEMORY_FENCE do { } while (0) # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE #endif #define expect_false(cond) ecb_expect_false (cond) #define expect_true(cond) ecb_expect_true (cond) #define noinline ecb_noinline #define inline_size ecb_inline #if EV_FEATURE_CODE # define inline_speed ecb_inline #else # define inline_speed static noinline #endif #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) #if EV_MINPRI == EV_MAXPRI # define ABSPRI(w) (((W)w), 0) #else # define ABSPRI(w) (((W)w)->priority - EV_MINPRI) #endif #define EMPTY /* required for microsofts broken pseudo-c compiler */ #define EMPTY2(a,b) /* used to suppress some warnings */ typedef ev_watcher *W; typedef ev_watcher_list *WL; typedef ev_watcher_time *WT; #define ev_active(w) ((W)(w))->active #define ev_at(w) ((WT)(w))->at #if EV_USE_REALTIME /* sig_atomic_t is used to avoid per-thread variables or locking but still */ /* giving it a reasonably high chance of working on typical architectures */ static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ #endif #if EV_USE_MONOTONIC static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ #endif #ifndef EV_FD_TO_WIN32_HANDLE # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd) #endif #ifndef EV_WIN32_HANDLE_TO_FD # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0) #endif #ifndef EV_WIN32_CLOSE_FD # define EV_WIN32_CLOSE_FD(fd) close (fd) #endif #ifdef _WIN32 # include "ev_win32.c" #endif /*****************************************************************************/ /* define a suitable floor function (only used by periodics atm) */ #if EV_USE_FLOOR # include <math.h> # define ev_floor(v) floor (v) #else #include <float.h> /* a floor() replacement function, should be independent of ev_tstamp type */ static ev_tstamp noinline ev_floor (ev_tstamp v) { /* the choice of shift factor is not terribly important */ #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */ const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.; #else const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.; #endif /* argument too large for an unsigned long? */ if (expect_false (v >= shift)) { ev_tstamp f; if (v == v - 1.) return v; /* very large number */ f = shift * ev_floor (v * (1. / shift)); return f + ev_floor (v - f); } /* special treatment for negative args? */ if (expect_false (v < 0.)) { ev_tstamp f = -ev_floor (-v); return f - (f == v ? 0 : 1); } /* fits into an unsigned long */ return (unsigned long)v; } #endif /*****************************************************************************/ #ifdef __linux # include <sys/utsname.h> #endif static unsigned int noinline ecb_cold ev_linux_version (void) { #ifdef __linux unsigned int v = 0; struct utsname buf; int i; char *p = buf.release; if (uname (&buf)) return 0; for (i = 3+1; --i; ) { unsigned int c = 0; for (;;) { if (*p >= '0' && *p <= '9') c = c * 10 + *p++ - '0'; else { p += *p == '.'; break; } } v = (v << 8) | c; } return v; #else return 0; #endif } /*****************************************************************************/ #if EV_AVOID_STDIO static void noinline ecb_cold ev_printerr (const char *msg) { write (STDERR_FILENO, msg, strlen (msg)); } #endif static void (*syserr_cb)(const char *msg) EV_THROW; void ecb_cold ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW { syserr_cb = cb; } static void noinline ecb_cold ev_syserr (const char *msg) { if (!msg) msg = "(libev) system error"; if (syserr_cb) syserr_cb (msg); else { #if EV_AVOID_STDIO ev_printerr (msg); ev_printerr (": "); ev_printerr (strerror (errno)); ev_printerr ("\n"); #else perror (msg); #endif abort (); } } static void * ev_realloc_emul (void *ptr, long size) EV_THROW { /* some systems, notably openbsd and darwin, fail to properly * implement realloc (x, 0) (as required by both ansi c-89 and * the single unix specification, so work around them here. * recently, also (at least) fedora and debian started breaking it, * despite documenting it otherwise. */ if (size) return realloc (ptr, size); free (ptr); return 0; } static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul; void ecb_cold ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW { alloc = cb; } inline_speed void * ev_realloc (void *ptr, long size) { ptr = alloc (ptr, size); if (!ptr && size) { #if EV_AVOID_STDIO ev_printerr ("(libev) memory allocation failed, aborting.\n"); #else fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size); #endif abort (); } return ptr; } #define ev_malloc(size) ev_realloc (0, (size)) #define ev_free(ptr) ev_realloc ((ptr), 0) /*****************************************************************************/ /* set in reify when reification needed */ #define EV_ANFD_REIFY 1 /* file descriptor info structure */ typedef struct { WL head; unsigned char events; /* the events watched for */ unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */ unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ unsigned char unused; #if EV_USE_EPOLL unsigned int egen; /* generation counter to counter epoll bugs */ #endif #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP SOCKET handle; #endif #if EV_USE_IOCP OVERLAPPED or, ow; #endif } ANFD; /* stores the pending event set for a given watcher */ typedef struct { W w; int events; /* the pending event set for the given watcher */ } ANPENDING; #if EV_USE_INOTIFY /* hash table entry per inotify-id */ typedef struct { WL head; } ANFS; #endif /* Heap Entry */ #if EV_HEAP_CACHE_AT /* a heap element */ typedef struct { ev_tstamp at; WT w; } ANHE; #define ANHE_w(he) (he).w /* access watcher, read-write */ #define ANHE_at(he) (he).at /* access cached at, read-only */ #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ #else /* a heap element */ typedef WT ANHE; #define ANHE_w(he) (he) #define ANHE_at(he) (he)->at #define ANHE_at_cache(he) #endif #if EV_MULTIPLICITY struct ev_loop { ev_tstamp ev_rt_now; #define ev_rt_now ((loop)->ev_rt_now) #define VAR(name,decl) decl; #include "ev_vars.h" #undef VAR }; #include "ev_wrap.h" static struct ev_loop default_loop_struct; EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */ #else EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */ #define VAR(name,decl) static decl; #include "ev_vars.h" #undef VAR static int ev_default_loop_ptr; #endif #if EV_FEATURE_API # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A) # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A) # define EV_INVOKE_PENDING invoke_cb (EV_A) #else # define EV_RELEASE_CB (void)0 # define EV_ACQUIRE_CB (void)0 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A) #endif #define EVBREAK_RECURSE 0x80 /*****************************************************************************/ #ifndef EV_HAVE_EV_TIME ev_tstamp ev_time (void) EV_THROW { #if EV_USE_REALTIME if (expect_true (have_realtime)) { struct timespec ts; clock_gettime (CLOCK_REALTIME, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif struct timeval tv; gettimeofday (&tv, 0); return tv.tv_sec + tv.tv_usec * 1e-6; } #endif inline_size ev_tstamp get_clock (void) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { struct timespec ts; clock_gettime (CLOCK_MONOTONIC, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif return ev_time (); } #if EV_MULTIPLICITY ev_tstamp ev_now (EV_P) EV_THROW { return ev_rt_now; } #endif void ev_sleep (ev_tstamp delay) EV_THROW { if (delay > 0.) { #if EV_USE_NANOSLEEP struct timespec ts; EV_TS_SET (ts, delay); nanosleep (&ts, 0); #elif defined _WIN32 Sleep ((unsigned long)(delay * 1e3)); #else struct timeval tv; /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ /* something not guaranteed by newer posix versions, but guaranteed */ /* by older ones */ EV_TV_SET (tv, delay); select (0, 0, 0, 0, &tv); #endif } } /*****************************************************************************/ #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ /* find a suitable new size for the given array, */ /* hopefully by rounding to a nice-to-malloc size */ inline_size int array_nextsize (int elem, int cur, int cnt) { int ncur = cur + 1; do ncur <<= 1; while (cnt > ncur); /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */ if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) { ncur *= elem; ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); ncur = ncur - sizeof (void *) * 4; ncur /= elem; } return ncur; } static void * noinline ecb_cold array_realloc (int elem, void *base, int *cur, int cnt) { *cur = array_nextsize (elem, *cur, cnt); return ev_realloc (base, elem * *cur); } #define array_init_zero(base,count) \ memset ((void *)(base), 0, sizeof (*(base)) * (count)) #define array_needsize(type,base,cur,cnt,init) \ if (expect_false ((cnt) > (cur))) \ { \ int ecb_unused ocur_ = (cur); \ (base) = (type *)array_realloc \ (sizeof (type), (base), &(cur), (cnt)); \ init ((base) + (ocur_), (cur) - ocur_); \ } #if 0 #define array_slim(type,stem) \ if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ { \ stem ## max = array_roundsize (stem ## cnt >> 1); \ base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ } #endif #define array_free(stem, idx) \ ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 /*****************************************************************************/ /* dummy callback for pending events */ static void noinline pendingcb (EV_P_ ev_prepare *w, int revents) { } void noinline ev_feed_event (EV_P_ void *w, int revents) EV_THROW { W w_ = (W)w; int pri = ABSPRI (w_); if (expect_false (w_->pending)) pendings [pri][w_->pending - 1].events |= revents; else { w_->pending = ++pendingcnt [pri]; array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); pendings [pri][w_->pending - 1].w = w_; pendings [pri][w_->pending - 1].events = revents; } pendingpri = NUMPRI - 1; } inline_speed void feed_reverse (EV_P_ W w) { array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2); rfeeds [rfeedcnt++] = w; } inline_size void feed_reverse_done (EV_P_ int revents) { do ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents); while (rfeedcnt); } inline_speed void queue_events (EV_P_ W *events, int eventcnt, int type) { int i; for (i = 0; i < eventcnt; ++i) ev_feed_event (EV_A_ events [i], type); } /*****************************************************************************/ inline_speed void fd_event_nocheck (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; ev_io *w; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) { int ev = w->events & revents; if (ev) ev_feed_event (EV_A_ (W)w, ev); } } /* do not submit kernel events for fds that have reify set */ /* because that means they changed while we were polling for new events */ inline_speed void fd_event (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; if (expect_true (!anfd->reify)) fd_event_nocheck (EV_A_ fd, revents); } void ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW { if (fd >= 0 && fd < anfdmax) fd_event_nocheck (EV_A_ fd, revents); } /* make sure the external fd watch events are in-sync */ /* with the kernel/libev internal state */ inline_size void fd_reify (EV_P) { int i; #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; if (anfd->reify & EV__IOFDSET && anfd->head) { SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd); if (handle != anfd->handle) { unsigned long arg; assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0)); /* handle changed, but fd didn't - we need to do it in two steps */ backend_modify (EV_A_ fd, anfd->events, 0); anfd->events = 0; anfd->handle = handle; } } } #endif for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; ev_io *w; unsigned char o_events = anfd->events; unsigned char o_reify = anfd->reify; anfd->reify = 0; /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */ { anfd->events = 0; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) anfd->events |= (unsigned char)w->events; if (o_events != anfd->events) o_reify = EV__IOFDSET; /* actually |= */ } if (o_reify & EV__IOFDSET) backend_modify (EV_A_ fd, o_events, anfd->events); } fdchangecnt = 0; } /* something about the given fd changed */ inline_size void fd_change (EV_P_ int fd, int flags) { unsigned char reify = anfds [fd].reify; anfds [fd].reify |= flags; if (expect_true (!reify)) { ++fdchangecnt; array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); fdchanges [fdchangecnt - 1] = fd; } } /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ inline_speed void ecb_cold fd_kill (EV_P_ int fd) { ev_io *w; while ((w = (ev_io *)anfds [fd].head)) { ev_io_stop (EV_A_ w); ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); } } /* check whether the given fd is actually valid, for error recovery */ inline_size int ecb_cold fd_valid (int fd) { #ifdef _WIN32 return EV_FD_TO_WIN32_HANDLE (fd) != -1; #else return fcntl (fd, F_GETFD) != -1; #endif } /* called on EBADF to verify fds */ static void noinline ecb_cold fd_ebadf (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) if (!fd_valid (fd) && errno == EBADF) fd_kill (EV_A_ fd); } /* called on ENOMEM in select/poll to kill some fds and retry */ static void noinline ecb_cold fd_enomem (EV_P) { int fd; for (fd = anfdmax; fd--; ) if (anfds [fd].events) { fd_kill (EV_A_ fd); break; } } /* usually called after fork if backend needs to re-arm all fds from scratch */ static void noinline fd_rearm_all (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) { anfds [fd].events = 0; anfds [fd].emask = 0; fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); } } /* used to prepare libev internal fd's */ /* this is not fork-safe */ inline_speed void fd_intern (int fd) { #ifdef _WIN32 unsigned long arg = 1; ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg); #else fcntl (fd, F_SETFD, FD_CLOEXEC); fcntl (fd, F_SETFL, O_NONBLOCK); #endif } /*****************************************************************************/ /* * the heap functions want a real array index. array index 0 is guaranteed to not * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives * the branching factor of the d-tree. */ /* * at the moment we allow libev the luxury of two heaps, * a small-code-size 2-heap one and a ~1.5kb larger 4-heap * which is more cache-efficient. * the difference is about 5% with 50000+ watchers. */ #if EV_USE_4HEAP #define DHEAP 4 #define HEAP0 (DHEAP - 1) /* index of first element in heap */ #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) #define UPHEAP_DONE(p,k) ((p) == (k)) /* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; ANHE *E = heap + N + HEAP0; for (;;) { ev_tstamp minat; ANHE *minpos; ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; /* find minimum child */ if (expect_true (pos + DHEAP - 1 < E)) { /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else if (pos < E) { /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else break; if (ANHE_at (he) <= minat) break; heap [k] = *minpos; ev_active (ANHE_w (*minpos)) = k; k = minpos - heap; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #else /* 4HEAP */ #define HEAP0 1 #define HPARENT(k) ((k) >> 1) #define UPHEAP_DONE(p,k) (!(p)) /* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; for (;;) { int c = k << 1; if (c >= N + HEAP0) break; c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) ? 1 : 0; if (ANHE_at (he) <= ANHE_at (heap [c])) break; heap [k] = heap [c]; ev_active (ANHE_w (heap [k])) = k; k = c; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #endif /* towards the root */ inline_speed void upheap (ANHE *heap, int k) { ANHE he = heap [k]; for (;;) { int p = HPARENT (k); if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he)) break; heap [k] = heap [p]; ev_active (ANHE_w (heap [k])) = k; k = p; } heap [k] = he; ev_active (ANHE_w (he)) = k; } /* move an element suitably so it is in a correct place */ inline_size void adjustheap (ANHE *heap, int N, int k) { if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)])) upheap (heap, k); else downheap (heap, N, k); } /* rebuild the heap: this function is used only once and executed rarely */ inline_size void reheap (ANHE *heap, int N) { int i; /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ for (i = 0; i < N; ++i) upheap (heap, i + HEAP0); } /*****************************************************************************/ /* associate signal watchers to a signal signal */ typedef struct { EV_ATOMIC_T pending; #if EV_MULTIPLICITY EV_P; #endif WL head; } ANSIG; static ANSIG signals [EV_NSIG - 1]; /*****************************************************************************/ #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE static void noinline ecb_cold evpipe_init (EV_P) { if (!ev_is_active (&pipe_w)) { int fds [2]; # if EV_USE_EVENTFD fds [0] = -1; fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); if (fds [1] < 0 && errno == EINVAL) fds [1] = eventfd (0, 0); if (fds [1] < 0) # endif { while (pipe (fds)) ev_syserr ("(libev) error creating signal/async pipe"); fd_intern (fds [0]); } fd_intern (fds [1]); evpipe [0] = fds [0]; if (evpipe [1] < 0) evpipe [1] = fds [1]; /* first call, set write fd */ else { /* on subsequent calls, do not change evpipe [1] */ /* so that evpipe_write can always rely on its value. */ /* this branch does not do anything sensible on windows, */ /* so must not be executed on windows */ dup2 (fds [1], evpipe [1]); close (fds [1]); } ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ); ev_io_start (EV_A_ &pipe_w); ev_unref (EV_A); /* watcher should not keep loop alive */ } } inline_speed void evpipe_write (EV_P_ EV_ATOMIC_T *flag) { ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */ if (expect_true (*flag)) return; *flag = 1; ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */ pipe_write_skipped = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */ if (pipe_write_wanted) { int old_errno; pipe_write_skipped = 0; ECB_MEMORY_FENCE_RELEASE; old_errno = errno; /* save errno because write will clobber it */ #if EV_USE_EVENTFD if (evpipe [0] < 0) { uint64_t counter = 1; write (evpipe [1], &counter, sizeof (uint64_t)); } else #endif { #ifdef _WIN32 WSABUF buf; DWORD sent; buf.buf = &buf; buf.len = 1; WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0); #else write (evpipe [1], &(evpipe [1]), 1); #endif } errno = old_errno; } } /* called whenever the libev signal pipe */ /* got some events (signal, async) */ static void pipecb (EV_P_ ev_io *iow, int revents) { int i; if (revents & EV_READ) { #if EV_USE_EVENTFD if (evpipe [0] < 0) { uint64_t counter; read (evpipe [1], &counter, sizeof (uint64_t)); } else #endif { char dummy[4]; #ifdef _WIN32 WSABUF buf; DWORD recvd; DWORD flags = 0; buf.buf = dummy; buf.len = sizeof (dummy); WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0); #else read (evpipe [0], &dummy, sizeof (dummy)); #endif } } pipe_write_skipped = 0; ECB_MEMORY_FENCE; /* push out skipped, acquire flags */ #if EV_SIGNAL_ENABLE if (sig_pending) { sig_pending = 0; ECB_MEMORY_FENCE; for (i = EV_NSIG - 1; i--; ) if (expect_false (signals [i].pending)) ev_feed_signal_event (EV_A_ i + 1); } #endif #if EV_ASYNC_ENABLE if (async_pending) { async_pending = 0; ECB_MEMORY_FENCE; for (i = asynccnt; i--; ) if (asyncs [i]->sent) { asyncs [i]->sent = 0; ECB_MEMORY_FENCE_RELEASE; ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); } } #endif } /*****************************************************************************/ void ev_feed_signal (int signum) EV_THROW { #if EV_MULTIPLICITY EV_P; ECB_MEMORY_FENCE_ACQUIRE; EV_A = signals [signum - 1].loop; if (!EV_A) return; #endif signals [signum - 1].pending = 1; evpipe_write (EV_A_ &sig_pending); } static void ev_sighandler (int signum) { #ifdef _WIN32 signal (signum, ev_sighandler); #endif ev_feed_signal (signum); } void noinline ev_feed_signal_event (EV_P_ int signum) EV_THROW { WL w; if (expect_false (signum <= 0 || signum >= EV_NSIG)) return; --signum; #if EV_MULTIPLICITY /* it is permissible to try to feed a signal to the wrong loop */ /* or, likely more useful, feeding a signal nobody is waiting for */ if (expect_false (signals [signum].loop != EV_A)) return; #endif signals [signum].pending = 0; ECB_MEMORY_FENCE_RELEASE; for (w = signals [signum].head; w; w = w->next) ev_feed_event (EV_A_ (W)w, EV_SIGNAL); } #if EV_USE_SIGNALFD static void sigfdcb (EV_P_ ev_io *iow, int revents) { struct signalfd_siginfo si[2], *sip; /* these structs are big */ for (;;) { ssize_t res = read (sigfd, si, sizeof (si)); /* not ISO-C, as res might be -1, but works with SuS */ for (sip = si; (char *)sip < (char *)si + res; ++sip) ev_feed_signal_event (EV_A_ sip->ssi_signo); if (res < (ssize_t)sizeof (si)) break; } } #endif #endif /*****************************************************************************/ #if EV_CHILD_ENABLE static WL childs [EV_PID_HASHSIZE]; static ev_signal childev; #ifndef WIFCONTINUED # define WIFCONTINUED(status) 0 #endif /* handle a single child status event */ inline_speed void child_reap (EV_P_ int chain, int pid, int status) { ev_child *w; int traced = WIFSTOPPED (status) || WIFCONTINUED (status); for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) { if ((w->pid == pid || !w->pid) && (!traced || (w->flags & 1))) { ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ w->rpid = pid; w->rstatus = status; ev_feed_event (EV_A_ (W)w, EV_CHILD); } } } #ifndef WCONTINUED # define WCONTINUED 0 #endif /* called on sigchld etc., calls waitpid */ static void childcb (EV_P_ ev_signal *sw, int revents) { int pid, status; /* some systems define WCONTINUED but then fail to support it (linux 2.4) */ if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) if (!WCONTINUED || errno != EINVAL || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) return; /* make sure we are called again until all children have been reaped */ /* we need to do it this way so that the callback gets called before we continue */ ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); child_reap (EV_A_ pid, pid, status); if ((EV_PID_HASHSIZE) > 1) child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ } #endif /*****************************************************************************/ #if EV_USE_IOCP # include "ev_iocp.c" #endif #if EV_USE_PORT # include "ev_port.c" #endif #if EV_USE_KQUEUE # include "ev_kqueue.c" #endif #if EV_USE_EPOLL # include "ev_epoll.c" #endif #if EV_USE_POLL # include "ev_poll.c" #endif #if EV_USE_SELECT # include "ev_select.c" #endif int ecb_cold ev_version_major (void) EV_THROW { return EV_VERSION_MAJOR; } int ecb_cold ev_version_minor (void) EV_THROW { return EV_VERSION_MINOR; } /* return true if we are running with elevated privileges and should ignore env variables */ int inline_size ecb_cold enable_secure (void) { #ifdef _WIN32 return 0; #else return getuid () != geteuid () || getgid () != getegid (); #endif } unsigned int ecb_cold ev_supported_backends (void) EV_THROW { unsigned int flags = 0; if (EV_USE_PORT ) flags |= EVBACKEND_PORT; if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; if (EV_USE_POLL ) flags |= EVBACKEND_POLL; if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; return flags; } unsigned int ecb_cold ev_recommended_backends (void) EV_THROW { unsigned int flags = ev_supported_backends (); #ifndef __NetBSD__ /* kqueue is borked on everything but netbsd apparently */ /* it usually doesn't work correctly on anything but sockets and pipes */ flags &= ~EVBACKEND_KQUEUE; #endif #ifdef __APPLE__ /* only select works correctly on that "unix-certified" platform */ flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ #endif #ifdef __FreeBSD__ flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */ #endif return flags; } unsigned int ecb_cold ev_embeddable_backends (void) EV_THROW { int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */ flags &= ~EVBACKEND_EPOLL; return flags; } unsigned int ev_backend (EV_P) EV_THROW { return backend; } #if EV_FEATURE_API unsigned int ev_iteration (EV_P) EV_THROW { return loop_count; } unsigned int ev_depth (EV_P) EV_THROW { return loop_depth; } void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { io_blocktime = interval; } void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { timeout_blocktime = interval; } void ev_set_userdata (EV_P_ void *data) EV_THROW { userdata = data; } void * ev_userdata (EV_P) EV_THROW { return userdata; } void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW { invoke_cb = invoke_pending_cb; } void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW { release_cb = release; acquire_cb = acquire; } #endif /* initialise a loop structure, must be zero-initialised */ static void noinline ecb_cold loop_init (EV_P_ unsigned int flags) EV_THROW { if (!backend) { origflags = flags; #if EV_USE_REALTIME if (!have_realtime) { struct timespec ts; if (!clock_gettime (CLOCK_REALTIME, &ts)) have_realtime = 1; } #endif #if EV_USE_MONOTONIC if (!have_monotonic) { struct timespec ts; if (!clock_gettime (CLOCK_MONOTONIC, &ts)) have_monotonic = 1; } #endif /* pid check not overridable via env */ #ifndef _WIN32 if (flags & EVFLAG_FORKCHECK) curpid = getpid (); #endif if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) flags = atoi (getenv ("LIBEV_FLAGS")); ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; rtmn_diff = ev_rt_now - mn_now; #if EV_FEATURE_API invoke_cb = ev_invoke_pending; #endif io_blocktime = 0.; timeout_blocktime = 0.; backend = 0; backend_fd = -1; sig_pending = 0; #if EV_ASYNC_ENABLE async_pending = 0; #endif pipe_write_skipped = 0; pipe_write_wanted = 0; evpipe [0] = -1; evpipe [1] = -1; #if EV_USE_INOTIFY fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; #endif #if EV_USE_SIGNALFD sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1; #endif if (!(flags & EVBACKEND_MASK)) flags |= ev_recommended_backends (); #if EV_USE_IOCP if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags); #endif #if EV_USE_PORT if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); #endif #if EV_USE_KQUEUE if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); #endif #if EV_USE_EPOLL if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); #endif #if EV_USE_POLL if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); #endif #if EV_USE_SELECT if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); #endif ev_prepare_init (&pending_w, pendingcb); #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE ev_init (&pipe_w, pipecb); ev_set_priority (&pipe_w, EV_MAXPRI); #endif } } /* free up a loop structure */ void ecb_cold ev_loop_destroy (EV_P) { int i; #if EV_MULTIPLICITY /* mimic free (0) */ if (!EV_A) return; #endif #if EV_CLEANUP_ENABLE /* queue cleanup watchers (and execute them) */ if (expect_false (cleanupcnt)) { queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP); EV_INVOKE_PENDING; } #endif #if EV_CHILD_ENABLE if (ev_is_default_loop (EV_A) && ev_is_active (&childev)) { ev_ref (EV_A); /* child watcher */ ev_signal_stop (EV_A_ &childev); } #endif if (ev_is_active (&pipe_w)) { /*ev_ref (EV_A);*/ /*ev_io_stop (EV_A_ &pipe_w);*/ if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]); } #if EV_USE_SIGNALFD if (ev_is_active (&sigfd_w)) close (sigfd); #endif #if EV_USE_INOTIFY if (fs_fd >= 0) close (fs_fd); #endif if (backend_fd >= 0) close (backend_fd); #if EV_USE_IOCP if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A); #endif #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_destroy (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); #endif #if EV_USE_POLL if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); #endif #if EV_USE_SELECT if (backend == EVBACKEND_SELECT) select_destroy (EV_A); #endif for (i = NUMPRI; i--; ) { array_free (pending, [i]); #if EV_IDLE_ENABLE array_free (idle, [i]); #endif } ev_free (anfds); anfds = 0; anfdmax = 0; /* have to use the microsoft-never-gets-it-right macro */ array_free (rfeed, EMPTY); array_free (fdchange, EMPTY); array_free (timer, EMPTY); #if EV_PERIODIC_ENABLE array_free (periodic, EMPTY); #endif #if EV_FORK_ENABLE array_free (fork, EMPTY); #endif #if EV_CLEANUP_ENABLE array_free (cleanup, EMPTY); #endif array_free (prepare, EMPTY); array_free (check, EMPTY); #if EV_ASYNC_ENABLE array_free (async, EMPTY); #endif backend = 0; #if EV_MULTIPLICITY if (ev_is_default_loop (EV_A)) #endif ev_default_loop_ptr = 0; #if EV_MULTIPLICITY else ev_free (EV_A); #endif } #if EV_USE_INOTIFY inline_size void infy_fork (EV_P); #endif inline_size void loop_fork (EV_P) { #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_fork (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); #endif #if EV_USE_INOTIFY infy_fork (EV_A); #endif #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE if (ev_is_active (&pipe_w)) { /* pipe_write_wanted must be false now, so modifying fd vars should be safe */ ev_ref (EV_A); ev_io_stop (EV_A_ &pipe_w); if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); evpipe_init (EV_A); /* iterate over everything, in case we missed something before */ ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); } #endif postfork = 0; } #if EV_MULTIPLICITY struct ev_loop * ecb_cold ev_loop_new (unsigned int flags) EV_THROW { EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); memset (EV_A, 0, sizeof (struct ev_loop)); loop_init (EV_A_ flags); if (ev_backend (EV_A)) return EV_A; ev_free (EV_A); return 0; } #endif /* multiplicity */ #if EV_VERIFY static void noinline ecb_cold verify_watcher (EV_P_ W w) { assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); if (w->pending) assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); } static void noinline ecb_cold verify_heap (EV_P_ ANHE *heap, int N) { int i; for (i = HEAP0; i < N + HEAP0; ++i) { assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); verify_watcher (EV_A_ (W)ANHE_w (heap [i])); } } static void noinline ecb_cold array_verify (EV_P_ W *ws, int cnt) { while (cnt--) { assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); verify_watcher (EV_A_ ws [cnt]); } } #endif #if EV_FEATURE_API void ecb_cold ev_verify (EV_P) EV_THROW { #if EV_VERIFY int i; WL w, w2; assert (activecnt >= -1); assert (fdchangemax >= fdchangecnt); for (i = 0; i < fdchangecnt; ++i) assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); assert (anfdmax >= 0); for (i = 0; i < anfdmax; ++i) { int j = 0; for (w = w2 = anfds [i].head; w; w = w->next) { verify_watcher (EV_A_ (W)w); if (j++ & 1) { assert (("libev: io watcher list contains a loop", w != w2)); w2 = w2->next; } assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); } } assert (timermax >= timercnt); verify_heap (EV_A_ timers, timercnt); #if EV_PERIODIC_ENABLE assert (periodicmax >= periodiccnt); verify_heap (EV_A_ periodics, periodiccnt); #endif for (i = NUMPRI; i--; ) { assert (pendingmax [i] >= pendingcnt [i]); #if EV_IDLE_ENABLE assert (idleall >= 0); assert (idlemax [i] >= idlecnt [i]); array_verify (EV_A_ (W *)idles [i], idlecnt [i]); #endif } #if EV_FORK_ENABLE assert (forkmax >= forkcnt); array_verify (EV_A_ (W *)forks, forkcnt); #endif #if EV_CLEANUP_ENABLE assert (cleanupmax >= cleanupcnt); array_verify (EV_A_ (W *)cleanups, cleanupcnt); #endif #if EV_ASYNC_ENABLE assert (asyncmax >= asynccnt); array_verify (EV_A_ (W *)asyncs, asynccnt); #endif #if EV_PREPARE_ENABLE assert (preparemax >= preparecnt); array_verify (EV_A_ (W *)prepares, preparecnt); #endif #if EV_CHECK_ENABLE assert (checkmax >= checkcnt); array_verify (EV_A_ (W *)checks, checkcnt); #endif # if 0 #if EV_CHILD_ENABLE for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) for (signum = EV_NSIG; signum--; ) if (signals [signum].pending) #endif # endif #endif } #endif #if EV_MULTIPLICITY struct ev_loop * ecb_cold #else int #endif ev_default_loop (unsigned int flags) EV_THROW { if (!ev_default_loop_ptr) { #if EV_MULTIPLICITY EV_P = ev_default_loop_ptr = &default_loop_struct; #else ev_default_loop_ptr = 1; #endif loop_init (EV_A_ flags); if (ev_backend (EV_A)) { #if EV_CHILD_ENABLE ev_signal_init (&childev, childcb, SIGCHLD); ev_set_priority (&childev, EV_MAXPRI); ev_signal_start (EV_A_ &childev); ev_unref (EV_A); /* child watcher should not keep loop alive */ #endif } else ev_default_loop_ptr = 0; } return ev_default_loop_ptr; } void ev_loop_fork (EV_P) EV_THROW { postfork = 1; } /*****************************************************************************/ void ev_invoke (EV_P_ void *w, int revents) { EV_CB_INVOKE ((W)w, revents); } unsigned int ev_pending_count (EV_P) EV_THROW { int pri; unsigned int count = 0; for (pri = NUMPRI; pri--; ) count += pendingcnt [pri]; return count; } void noinline ev_invoke_pending (EV_P) { pendingpri = NUMPRI; while (pendingpri) /* pendingpri possibly gets modified in the inner loop */ { --pendingpri; while (pendingcnt [pendingpri]) { ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri]; p->w->pending = 0; EV_CB_INVOKE (p->w, p->events); EV_FREQUENT_CHECK; } } } #if EV_IDLE_ENABLE /* make idle watchers pending. this handles the "call-idle */ /* only when higher priorities are idle" logic */ inline_size void idle_reify (EV_P) { if (expect_false (idleall)) { int pri; for (pri = NUMPRI; pri--; ) { if (pendingcnt [pri]) break; if (idlecnt [pri]) { queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); break; } } } } #endif /* make timers pending */ inline_size void timers_reify (EV_P) { EV_FREQUENT_CHECK; if (timercnt && ANHE_at (timers [HEAP0]) < mn_now) { do { ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->repeat) { ev_at (w) += w->repeat; if (ev_at (w) < mn_now) ev_at (w) = mn_now; assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); ANHE_at_cache (timers [HEAP0]); downheap (timers, timercnt, HEAP0); } else ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); feed_reverse_done (EV_A_ EV_TIMER); } } #if EV_PERIODIC_ENABLE static void noinline periodic_recalc (EV_P_ ev_periodic *w) { ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL; ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval); /* the above almost always errs on the low side */ while (at <= ev_rt_now) { ev_tstamp nat = at + w->interval; /* when resolution fails us, we use ev_rt_now */ if (expect_false (nat == at)) { at = ev_rt_now; break; } at = nat; } ev_at (w) = at; } /* make periodics pending */ inline_size void periodics_reify (EV_P) { EV_FREQUENT_CHECK; while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) { do { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->reschedule_cb) { ev_at (w) = w->reschedule_cb (w, ev_rt_now); assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else if (w->interval) { periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now); feed_reverse_done (EV_A_ EV_PERIODIC); } } /* simply recalculate all periodics */ /* TODO: maybe ensure that at least one event happens when jumping forward? */ static void noinline ecb_cold periodics_reschedule (EV_P) { int i; /* adjust periodics after time jump */ for (i = HEAP0; i < periodiccnt + HEAP0; ++i) { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [i]); } reheap (periodics, periodiccnt); } #endif /* adjust all timers by a given offset */ static void noinline ecb_cold timers_reschedule (EV_P_ ev_tstamp adjust) { int i; for (i = 0; i < timercnt; ++i) { ANHE *he = timers + i + HEAP0; ANHE_w (*he)->at += adjust; ANHE_at_cache (*he); } } /* fetch new monotonic and realtime times from the kernel */ /* also detect if there was a timejump, and act accordingly */ inline_speed void time_update (EV_P_ ev_tstamp max_block) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { int i; ev_tstamp odiff = rtmn_diff; mn_now = get_clock (); /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ /* interpolate in the meantime */ if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) { ev_rt_now = rtmn_diff + mn_now; return; } now_floor = mn_now; ev_rt_now = ev_time (); /* loop a few times, before making important decisions. * on the choice of "4": one iteration isn't enough, * in case we get preempted during the calls to * ev_time and get_clock. a second call is almost guaranteed * to succeed in that case, though. and looping a few more times * doesn't hurt either as we only do this on time-jumps or * in the unlikely event of having been preempted here. */ for (i = 4; --i; ) { ev_tstamp diff; rtmn_diff = ev_rt_now - mn_now; diff = odiff - rtmn_diff; if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP)) return; /* all is well */ ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; } /* no timer adjustment, as the monotonic clock doesn't jump */ /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ # if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); # endif } else #endif { ev_rt_now = ev_time (); if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) { /* adjust timers. this is easy, as the offset is the same for all of them */ timers_reschedule (EV_A_ ev_rt_now - mn_now); #if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); #endif } mn_now = ev_rt_now; } } int ev_run (EV_P_ int flags) { #if EV_FEATURE_API ++loop_depth; #endif assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE)); loop_done = EVBREAK_CANCEL; EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ do { #if EV_VERIFY >= 2 ev_verify (EV_A); #endif #ifndef _WIN32 if (expect_false (curpid)) /* penalise the forking check even more */ if (expect_false (getpid () != curpid)) { curpid = getpid (); postfork = 1; } #endif #if EV_FORK_ENABLE /* we might have forked, so queue fork handlers */ if (expect_false (postfork)) if (forkcnt) { queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); EV_INVOKE_PENDING; } #endif #if EV_PREPARE_ENABLE /* queue prepare watchers (and execute them) */ if (expect_false (preparecnt)) { queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); EV_INVOKE_PENDING; } #endif if (expect_false (loop_done)) break; /* we might have forked, so reify kernel state if necessary */ if (expect_false (postfork)) loop_fork (EV_A); /* update fd-related kernel structures */ fd_reify (EV_A); /* calculate blocking time */ { ev_tstamp waittime = 0.; ev_tstamp sleeptime = 0.; /* remember old timestamp for io_blocktime calculation */ ev_tstamp prev_mn_now = mn_now; /* update time to cancel out callback processing overhead */ time_update (EV_A_ 1e100); /* from now on, we want a pipe-wake-up */ pipe_write_wanted = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */ if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped))) { waittime = MAX_BLOCKTIME; if (timercnt) { ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now; if (waittime > to) waittime = to; } #if EV_PERIODIC_ENABLE if (periodiccnt) { ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now; if (waittime > to) waittime = to; } #endif /* don't let timeouts decrease the waittime below timeout_blocktime */ if (expect_false (waittime < timeout_blocktime)) waittime = timeout_blocktime; /* at this point, we NEED to wait, so we have to ensure */ /* to pass a minimum nonzero value to the backend */ if (expect_false (waittime < backend_mintime)) waittime = backend_mintime; /* extra check because io_blocktime is commonly 0 */ if (expect_false (io_blocktime)) { sleeptime = io_blocktime - (mn_now - prev_mn_now); if (sleeptime > waittime - backend_mintime) sleeptime = waittime - backend_mintime; if (expect_true (sleeptime > 0.)) { ev_sleep (sleeptime); waittime -= sleeptime; } } } #if EV_FEATURE_API ++loop_count; #endif assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */ backend_poll (EV_A_ waittime); assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */ pipe_write_wanted = 0; /* just an optimisation, no fence needed */ ECB_MEMORY_FENCE_ACQUIRE; if (pipe_write_skipped) { assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w))); ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); } /* update ev_rt_now, do magic */ time_update (EV_A_ waittime + sleeptime); } /* queue pending timers and reschedule them */ timers_reify (EV_A); /* relative timers called last */ #if EV_PERIODIC_ENABLE periodics_reify (EV_A); /* absolute timers called first */ #endif #if EV_IDLE_ENABLE /* queue idle watchers unless other events are pending */ idle_reify (EV_A); #endif #if EV_CHECK_ENABLE /* queue check watchers, to be executed first */ if (expect_false (checkcnt)) queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); #endif EV_INVOKE_PENDING; } while (expect_true ( activecnt && !loop_done && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT)) )); if (loop_done == EVBREAK_ONE) loop_done = EVBREAK_CANCEL; #if EV_FEATURE_API --loop_depth; #endif return activecnt; } void ev_break (EV_P_ int how) EV_THROW { loop_done = how; } void ev_ref (EV_P) EV_THROW { ++activecnt; } void ev_unref (EV_P) EV_THROW { --activecnt; } void ev_now_update (EV_P) EV_THROW { time_update (EV_A_ 1e100); } void ev_suspend (EV_P) EV_THROW { ev_now_update (EV_A); } void ev_resume (EV_P) EV_THROW { ev_tstamp mn_prev = mn_now; ev_now_update (EV_A); timers_reschedule (EV_A_ mn_now - mn_prev); #if EV_PERIODIC_ENABLE /* TODO: really do this? */ periodics_reschedule (EV_A); #endif } /*****************************************************************************/ /* singly-linked list management, used when the expected list length is short */ inline_size void wlist_add (WL *head, WL elem) { elem->next = *head; *head = elem; } inline_size void wlist_del (WL *head, WL elem) { while (*head) { if (expect_true (*head == elem)) { *head = elem->next; break; } head = &(*head)->next; } } /* internal, faster, version of ev_clear_pending */ inline_speed void clear_pending (EV_P_ W w) { if (w->pending) { pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w; w->pending = 0; } } int ev_clear_pending (EV_P_ void *w) EV_THROW { W w_ = (W)w; int pending = w_->pending; if (expect_true (pending)) { ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; p->w = (W)&pending_w; w_->pending = 0; return p->events; } else return 0; } inline_size void pri_adjust (EV_P_ W w) { int pri = ev_priority (w); pri = pri < EV_MINPRI ? EV_MINPRI : pri; pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; ev_set_priority (w, pri); } inline_speed void ev_start (EV_P_ W w, int active) { pri_adjust (EV_A_ w); w->active = active; ev_ref (EV_A); } inline_size void ev_stop (EV_P_ W w) { ev_unref (EV_A); w->active = 0; } /*****************************************************************************/ void noinline ev_io_start (EV_P_ ev_io *w) EV_THROW { int fd = w->fd; if (expect_false (ev_is_active (w))) return; assert (("libev: ev_io_start called with negative fd", fd >= 0)); assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); wlist_add (&anfds[fd].head, (WL)w); /* common bug, apparently */ assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w)); fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); w->events &= ~EV__IOFDSET; EV_FREQUENT_CHECK; } void noinline ev_io_stop (EV_P_ ev_io *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); EV_FREQUENT_CHECK; wlist_del (&anfds[w->fd].head, (WL)w); ev_stop (EV_A_ (W)w); fd_change (EV_A_ w->fd, EV_ANFD_REIFY); EV_FREQUENT_CHECK; } void noinline ev_timer_start (EV_P_ ev_timer *w) EV_THROW { if (expect_false (ev_is_active (w))) return; ev_at (w) += mn_now; assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); EV_FREQUENT_CHECK; ++timercnt; ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); ANHE_w (timers [ev_active (w)]) = (WT)w; ANHE_at_cache (timers [ev_active (w)]); upheap (timers, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ } void noinline ev_timer_stop (EV_P_ ev_timer *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); --timercnt; if (expect_true (active < timercnt + HEAP0)) { timers [active] = timers [timercnt + HEAP0]; adjustheap (timers, timercnt, active); } } ev_at (w) -= mn_now; ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } void noinline ev_timer_again (EV_P_ ev_timer *w) EV_THROW { EV_FREQUENT_CHECK; clear_pending (EV_A_ (W)w); if (ev_is_active (w)) { if (w->repeat) { ev_at (w) = mn_now + w->repeat; ANHE_at_cache (timers [ev_active (w)]); adjustheap (timers, timercnt, ev_active (w)); } else ev_timer_stop (EV_A_ w); } else if (w->repeat) { ev_at (w) = w->repeat; ev_timer_start (EV_A_ w); } EV_FREQUENT_CHECK; } ev_tstamp ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW { return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); } #if EV_PERIODIC_ENABLE void noinline ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW { if (expect_false (ev_is_active (w))) return; if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) { assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); periodic_recalc (EV_A_ w); } else ev_at (w) = w->offset; EV_FREQUENT_CHECK; ++periodiccnt; ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); ANHE_w (periodics [ev_active (w)]) = (WT)w; ANHE_at_cache (periodics [ev_active (w)]); upheap (periodics, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ } void noinline ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); --periodiccnt; if (expect_true (active < periodiccnt + HEAP0)) { periodics [active] = periodics [periodiccnt + HEAP0]; adjustheap (periodics, periodiccnt, active); } } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } void noinline ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW { /* TODO: use adjustheap and recalculation */ ev_periodic_stop (EV_A_ w); ev_periodic_start (EV_A_ w); } #endif #ifndef SA_RESTART # define SA_RESTART 0 #endif #if EV_SIGNAL_ENABLE void noinline ev_signal_start (EV_P_ ev_signal *w) EV_THROW { if (expect_false (ev_is_active (w))) return; assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); #if EV_MULTIPLICITY assert (("libev: a signal must not be attached to two different loops", !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); signals [w->signum - 1].loop = EV_A; ECB_MEMORY_FENCE_RELEASE; #endif EV_FREQUENT_CHECK; #if EV_USE_SIGNALFD if (sigfd == -2) { sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC); if (sigfd < 0 && errno == EINVAL) sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */ if (sigfd >= 0) { fd_intern (sigfd); /* doing it twice will not hurt */ sigemptyset (&sigfd_set); ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ); ev_set_priority (&sigfd_w, EV_MAXPRI); ev_io_start (EV_A_ &sigfd_w); ev_unref (EV_A); /* signalfd watcher should not keep loop alive */ } } if (sigfd >= 0) { /* TODO: check .head */ sigaddset (&sigfd_set, w->signum); sigprocmask (SIG_BLOCK, &sigfd_set, 0); signalfd (sigfd, &sigfd_set, 0); } #endif ev_start (EV_A_ (W)w, 1); wlist_add (&signals [w->signum - 1].head, (WL)w); if (!((WL)w)->next) # if EV_USE_SIGNALFD if (sigfd < 0) /*TODO*/ # endif { # ifdef _WIN32 evpipe_init (EV_A); signal (w->signum, ev_sighandler); # else struct sigaction sa; evpipe_init (EV_A); sa.sa_handler = ev_sighandler; sigfillset (&sa.sa_mask); sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ sigaction (w->signum, &sa, 0); if (origflags & EVFLAG_NOSIGMASK) { sigemptyset (&sa.sa_mask); sigaddset (&sa.sa_mask, w->signum); sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); } #endif } EV_FREQUENT_CHECK; } void noinline ev_signal_stop (EV_P_ ev_signal *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&signals [w->signum - 1].head, (WL)w); ev_stop (EV_A_ (W)w); if (!signals [w->signum - 1].head) { #if EV_MULTIPLICITY signals [w->signum - 1].loop = 0; /* unattach from signal */ #endif #if EV_USE_SIGNALFD if (sigfd >= 0) { sigset_t ss; sigemptyset (&ss); sigaddset (&ss, w->signum); sigdelset (&sigfd_set, w->signum); signalfd (sigfd, &sigfd_set, 0); sigprocmask (SIG_UNBLOCK, &ss, 0); } else #endif signal (w->signum, SIG_DFL); } EV_FREQUENT_CHECK; } #endif #if EV_CHILD_ENABLE void ev_child_start (EV_P_ ev_child *w) EV_THROW { #if EV_MULTIPLICITY assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); #endif if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); EV_FREQUENT_CHECK; } void ev_child_stop (EV_P_ ev_child *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_STAT_ENABLE # ifdef _WIN32 # undef lstat # define lstat(a,b) _stati64 (a,b) # endif #define DEF_STAT_INTERVAL 5.0074891 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ #define MIN_STAT_INTERVAL 0.1074891 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); #if EV_USE_INOTIFY /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */ # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX) static void noinline infy_add (EV_P_ ev_stat *w) { w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO | IN_DONT_FOLLOW | IN_MASK_ADD); if (w->wd >= 0) { struct statfs sfs; /* now local changes will be tracked by inotify, but remote changes won't */ /* unless the filesystem is known to be local, we therefore still poll */ /* also do poll on <2.6.25, but with normal frequency */ if (!fs_2625) w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; else if (!statfs (w->path, &sfs) && (sfs.f_type == 0x1373 /* devfs */ || sfs.f_type == 0x4006 /* fat */ || sfs.f_type == 0x4d44 /* msdos */ || sfs.f_type == 0xEF53 /* ext2/3 */ || sfs.f_type == 0x72b6 /* jffs2 */ || sfs.f_type == 0x858458f6 /* ramfs */ || sfs.f_type == 0x5346544e /* ntfs */ || sfs.f_type == 0x3153464a /* jfs */ || sfs.f_type == 0x9123683e /* btrfs */ || sfs.f_type == 0x52654973 /* reiser3 */ || sfs.f_type == 0x01021994 /* tmpfs */ || sfs.f_type == 0x58465342 /* xfs */)) w->timer.repeat = 0.; /* filesystem is local, kernel new enough */ else w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */ } else { /* can't use inotify, continue to stat */ w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; /* if path is not there, monitor some parent directory for speedup hints */ /* note that exceeding the hardcoded path limit is not a correctness issue, */ /* but an efficiency issue only */ if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) { char path [4096]; strcpy (path, w->path); do { int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); char *pend = strrchr (path, '/'); if (!pend || pend == path) break; *pend = 0; w->wd = inotify_add_watch (fs_fd, path, mask); } while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); } } if (w->wd >= 0) wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); /* now re-arm timer, if required */ if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); } static void noinline infy_del (EV_P_ ev_stat *w) { int slot; int wd = w->wd; if (wd < 0) return; w->wd = -2; slot = wd & ((EV_INOTIFY_HASHSIZE) - 1); wlist_del (&fs_hash [slot].head, (WL)w); /* remove this watcher, if others are watching it, they will rearm */ inotify_rm_watch (fs_fd, wd); } static void noinline infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) { if (slot < 0) /* overflow, need to check for all hash slots */ for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) infy_wd (EV_A_ slot, wd, ev); else { WL w_; for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; ) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us remove this watcher and all before it */ if (w->wd == wd || wd == -1) { if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) { wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); w->wd = -1; infy_add (EV_A_ w); /* re-add, no matter what */ } stat_timer_cb (EV_A_ &w->timer, 0); } } } } static void infy_cb (EV_P_ ev_io *w, int revents) { char buf [EV_INOTIFY_BUFSIZE]; int ofs; int len = read (fs_fd, buf, sizeof (buf)); for (ofs = 0; ofs < len; ) { struct inotify_event *ev = (struct inotify_event *)(buf + ofs); infy_wd (EV_A_ ev->wd, ev->wd, ev); ofs += sizeof (struct inotify_event) + ev->len; } } inline_size void ecb_cold ev_check_2625 (EV_P) { /* kernels < 2.6.25 are borked * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html */ if (ev_linux_version () < 0x020619) return; fs_2625 = 1; } inline_size int infy_newfd (void) { #if defined IN_CLOEXEC && defined IN_NONBLOCK int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK); if (fd >= 0) return fd; #endif return inotify_init (); } inline_size void infy_init (EV_P) { if (fs_fd != -2) return; fs_fd = -1; ev_check_2625 (EV_A); fs_fd = infy_newfd (); if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); ev_set_priority (&fs_w, EV_MAXPRI); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); } } inline_size void infy_fork (EV_P) { int slot; if (fs_fd < 0) return; ev_ref (EV_A); ev_io_stop (EV_A_ &fs_w); close (fs_fd); fs_fd = infy_newfd (); if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_set (&fs_w, fs_fd, EV_READ); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); } for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) { WL w_ = fs_hash [slot].head; fs_hash [slot].head = 0; while (w_) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us add this watcher */ w->wd = -1; if (fs_fd >= 0) infy_add (EV_A_ w); /* re-add, no matter what */ else { w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); } } } } #endif #ifdef _WIN32 # define EV_LSTAT(p,b) _stati64 (p, b) #else # define EV_LSTAT(p,b) lstat (p, b) #endif void ev_stat_stat (EV_P_ ev_stat *w) EV_THROW { if (lstat (w->path, &w->attr) < 0) w->attr.st_nlink = 0; else if (!w->attr.st_nlink) w->attr.st_nlink = 1; } static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents) { ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); ev_statdata prev = w->attr; ev_stat_stat (EV_A_ w); /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ if ( prev.st_dev != w->attr.st_dev || prev.st_ino != w->attr.st_ino || prev.st_mode != w->attr.st_mode || prev.st_nlink != w->attr.st_nlink || prev.st_uid != w->attr.st_uid || prev.st_gid != w->attr.st_gid || prev.st_rdev != w->attr.st_rdev || prev.st_size != w->attr.st_size || prev.st_atime != w->attr.st_atime || prev.st_mtime != w->attr.st_mtime || prev.st_ctime != w->attr.st_ctime ) { /* we only update w->prev on actual differences */ /* in case we test more often than invoke the callback, */ /* to ensure that prev is always different to attr */ w->prev = prev; #if EV_USE_INOTIFY if (fs_fd >= 0) { infy_del (EV_A_ w); infy_add (EV_A_ w); ev_stat_stat (EV_A_ w); /* avoid race... */ } #endif ev_feed_event (EV_A_ w, EV_STAT); } } void ev_stat_start (EV_P_ ev_stat *w) EV_THROW { if (expect_false (ev_is_active (w))) return; ev_stat_stat (EV_A_ w); if (w->interval < MIN_STAT_INTERVAL && w->interval) w->interval = MIN_STAT_INTERVAL; ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL); ev_set_priority (&w->timer, ev_priority (w)); #if EV_USE_INOTIFY infy_init (EV_A); if (fs_fd >= 0) infy_add (EV_A_ w); else #endif { ev_timer_again (EV_A_ &w->timer); ev_unref (EV_A); } ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_stat_stop (EV_P_ ev_stat *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; #if EV_USE_INOTIFY infy_del (EV_A_ w); #endif if (ev_is_active (&w->timer)) { ev_ref (EV_A); ev_timer_stop (EV_A_ &w->timer); } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_IDLE_ENABLE void ev_idle_start (EV_P_ ev_idle *w) EV_THROW { if (expect_false (ev_is_active (w))) return; pri_adjust (EV_A_ (W)w); EV_FREQUENT_CHECK; { int active = ++idlecnt [ABSPRI (w)]; ++idleall; ev_start (EV_A_ (W)w, active); array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); idles [ABSPRI (w)][active - 1] = w; } EV_FREQUENT_CHECK; } void ev_idle_stop (EV_P_ ev_idle *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; ev_active (idles [ABSPRI (w)][active - 1]) = active; ev_stop (EV_A_ (W)w); --idleall; } EV_FREQUENT_CHECK; } #endif #if EV_PREPARE_ENABLE void ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++preparecnt); array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); prepares [preparecnt - 1] = w; EV_FREQUENT_CHECK; } void ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); prepares [active - 1] = prepares [--preparecnt]; ev_active (prepares [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_CHECK_ENABLE void ev_check_start (EV_P_ ev_check *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++checkcnt); array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); checks [checkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_check_stop (EV_P_ ev_check *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); checks [active - 1] = checks [--checkcnt]; ev_active (checks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_EMBED_ENABLE void noinline ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW { ev_run (w->other, EVRUN_NOWAIT); } static void embed_io_cb (EV_P_ ev_io *io, int revents) { ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); if (ev_cb (w)) ev_feed_event (EV_A_ (W)w, EV_EMBED); else ev_run (w->other, EVRUN_NOWAIT); } static void embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) { ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); { EV_P = w->other; while (fdchangecnt) { fd_reify (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); } } } static void embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) { ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); ev_embed_stop (EV_A_ w); { EV_P = w->other; ev_loop_fork (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); } ev_embed_start (EV_A_ w); } #if 0 static void embed_idle_cb (EV_P_ ev_idle *idle, int revents) { ev_idle_stop (EV_A_ idle); } #endif void ev_embed_start (EV_P_ ev_embed *w) EV_THROW { if (expect_false (ev_is_active (w))) return; { EV_P = w->other; assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); } EV_FREQUENT_CHECK; ev_set_priority (&w->io, ev_priority (w)); ev_io_start (EV_A_ &w->io); ev_prepare_init (&w->prepare, embed_prepare_cb); ev_set_priority (&w->prepare, EV_MINPRI); ev_prepare_start (EV_A_ &w->prepare); ev_fork_init (&w->fork, embed_fork_cb); ev_fork_start (EV_A_ &w->fork); /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_embed_stop (EV_P_ ev_embed *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_io_stop (EV_A_ &w->io); ev_prepare_stop (EV_A_ &w->prepare); ev_fork_stop (EV_A_ &w->fork); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_FORK_ENABLE void ev_fork_start (EV_P_ ev_fork *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++forkcnt); array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); forks [forkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_fork_stop (EV_P_ ev_fork *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); forks [active - 1] = forks [--forkcnt]; ev_active (forks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_CLEANUP_ENABLE void ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++cleanupcnt); array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2); cleanups [cleanupcnt - 1] = w; /* cleanup watchers should never keep a refcount on the loop */ ev_unref (EV_A); EV_FREQUENT_CHECK; } void ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_ref (EV_A); { int active = ev_active (w); cleanups [active - 1] = cleanups [--cleanupcnt]; ev_active (cleanups [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_ASYNC_ENABLE void ev_async_start (EV_P_ ev_async *w) EV_THROW { if (expect_false (ev_is_active (w))) return; w->sent = 0; evpipe_init (EV_A); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++asynccnt); array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); asyncs [asynccnt - 1] = w; EV_FREQUENT_CHECK; } void ev_async_stop (EV_P_ ev_async *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); asyncs [active - 1] = asyncs [--asynccnt]; ev_active (asyncs [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } void ev_async_send (EV_P_ ev_async *w) EV_THROW { w->sent = 1; evpipe_write (EV_A_ &async_pending); } #endif /*****************************************************************************/ struct ev_once { ev_io io; ev_timer to; void (*cb)(int revents, void *arg); void *arg; }; static void once_cb (EV_P_ struct ev_once *once, int revents) { void (*cb)(int revents, void *arg) = once->cb; void *arg = once->arg; ev_io_stop (EV_A_ &once->io); ev_timer_stop (EV_A_ &once->to); ev_free (once); cb (revents, arg); } static void once_cb_io (EV_P_ ev_io *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to)); } static void once_cb_to (EV_P_ ev_timer *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); } void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW { struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); if (expect_false (!once)) { cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg); return; } once->cb = cb; once->arg = arg; ev_init (&once->io, once_cb_io); if (fd >= 0) { ev_io_set (&once->io, fd, events); ev_io_start (EV_A_ &once->io); } ev_init (&once->to, once_cb_to); if (timeout >= 0.) { ev_timer_set (&once->to, timeout, 0.); ev_timer_start (EV_A_ &once->to); } } /*****************************************************************************/ #if EV_WALK_ENABLE void ecb_cold ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW { int i, j; ev_watcher_list *wl, *wn; if (types & (EV_IO | EV_EMBED)) for (i = 0; i < anfdmax; ++i) for (wl = anfds [i].head; wl; ) { wn = wl->next; #if EV_EMBED_ENABLE if (ev_cb ((ev_io *)wl) == embed_io_cb) { if (types & EV_EMBED) cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io)); } else #endif #if EV_USE_INOTIFY if (ev_cb ((ev_io *)wl) == infy_cb) ; else #endif if ((ev_io *)wl != &pipe_w) if (types & EV_IO) cb (EV_A_ EV_IO, wl); wl = wn; } if (types & (EV_TIMER | EV_STAT)) for (i = timercnt + HEAP0; i-- > HEAP0; ) #if EV_STAT_ENABLE /*TODO: timer is not always active*/ if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb) { if (types & EV_STAT) cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer)); } else #endif if (types & EV_TIMER) cb (EV_A_ EV_TIMER, ANHE_w (timers [i])); #if EV_PERIODIC_ENABLE if (types & EV_PERIODIC) for (i = periodiccnt + HEAP0; i-- > HEAP0; ) cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); #endif #if EV_IDLE_ENABLE if (types & EV_IDLE) for (j = NUMPRI; j--; ) for (i = idlecnt [j]; i--; ) cb (EV_A_ EV_IDLE, idles [j][i]); #endif #if EV_FORK_ENABLE if (types & EV_FORK) for (i = forkcnt; i--; ) if (ev_cb (forks [i]) != embed_fork_cb) cb (EV_A_ EV_FORK, forks [i]); #endif #if EV_ASYNC_ENABLE if (types & EV_ASYNC) for (i = asynccnt; i--; ) cb (EV_A_ EV_ASYNC, asyncs [i]); #endif #if EV_PREPARE_ENABLE if (types & EV_PREPARE) for (i = preparecnt; i--; ) # if EV_EMBED_ENABLE if (ev_cb (prepares [i]) != embed_prepare_cb) # endif cb (EV_A_ EV_PREPARE, prepares [i]); #endif #if EV_CHECK_ENABLE if (types & EV_CHECK) for (i = checkcnt; i--; ) cb (EV_A_ EV_CHECK, checks [i]); #endif #if EV_SIGNAL_ENABLE if (types & EV_SIGNAL) for (i = 0; i < EV_NSIG - 1; ++i) for (wl = signals [i].head; wl; ) { wn = wl->next; cb (EV_A_ EV_SIGNAL, wl); wl = wn; } #endif #if EV_CHILD_ENABLE if (types & EV_CHILD) for (i = (EV_PID_HASHSIZE); i--; ) for (wl = childs [i]; wl; ) { wn = wl->next; cb (EV_A_ EV_CHILD, wl); wl = wn; } #endif /* EV_STAT 0x00001000 /* stat data changed */ /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ } #endif #if EV_MULTIPLICITY #include "ev_wrap.h" #endif
ev.h:
/* libev native API header*/ #ifndef EV_H_ #define EV_H_ #ifdef __cplusplus # define EV_CPP(x) x #else # define EV_CPP(x) #endif #define EV_THROW EV_CPP(throw()) EV_CPP(extern "C" {) /*****************************************************************************/ /* pre-4.0 compatibility */ #ifndef EV_COMPAT3 # define EV_COMPAT3 1 #endif #ifndef EV_FEATURES # if defined __OPTIMIZE_SIZE__ # define EV_FEATURES 0x7c # else # define EV_FEATURES 0x7f # endif #endif #define EV_FEATURE_CODE ((EV_FEATURES) & 1) #define EV_FEATURE_DATA ((EV_FEATURES) & 2) #define EV_FEATURE_CONFIG ((EV_FEATURES) & 4) #define EV_FEATURE_API ((EV_FEATURES) & 8) #define EV_FEATURE_WATCHERS ((EV_FEATURES) & 16) #define EV_FEATURE_BACKENDS ((EV_FEATURES) & 32) #define EV_FEATURE_OS ((EV_FEATURES) & 64) /* these priorities are inclusive, higher priorities will be invoked earlier */ #ifndef EV_MINPRI # define EV_MINPRI (EV_FEATURE_CONFIG ? -2 : 0) #endif #ifndef EV_MAXPRI # define EV_MAXPRI (EV_FEATURE_CONFIG ? +2 : 0) #endif #ifndef EV_MULTIPLICITY # define EV_MULTIPLICITY EV_FEATURE_CONFIG #endif #ifndef EV_PERIODIC_ENABLE # define EV_PERIODIC_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_STAT_ENABLE # define EV_STAT_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_PREPARE_ENABLE # define EV_PREPARE_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_CHECK_ENABLE # define EV_CHECK_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_IDLE_ENABLE # define EV_IDLE_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_FORK_ENABLE # define EV_FORK_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_CLEANUP_ENABLE # define EV_CLEANUP_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_SIGNAL_ENABLE # define EV_SIGNAL_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_CHILD_ENABLE # ifdef _WIN32 # define EV_CHILD_ENABLE 0 # else # define EV_CHILD_ENABLE EV_FEATURE_WATCHERS #endif #endif #ifndef EV_ASYNC_ENABLE # define EV_ASYNC_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_EMBED_ENABLE # define EV_EMBED_ENABLE EV_FEATURE_WATCHERS #endif #ifndef EV_WALK_ENABLE # define EV_WALK_ENABLE 0 /* not yet */ #endif /*****************************************************************************/ #if EV_CHILD_ENABLE && !EV_SIGNAL_ENABLE # undef EV_SIGNAL_ENABLE # define EV_SIGNAL_ENABLE 1 #endif /*****************************************************************************/ typedef double ev_tstamp; #ifndef EV_ATOMIC_T # include <signal.h> # define EV_ATOMIC_T sig_atomic_t volatile #endif #if EV_STAT_ENABLE # ifdef _WIN32 # include <time.h> # include <sys/types.h> # endif # include <sys/stat.h> #endif /* support multiple event loops? */ #if EV_MULTIPLICITY struct ev_loop; # define EV_P struct ev_loop *loop /* a loop as sole parameter in a declaration */ # define EV_P_ EV_P, /* a loop as first of multiple parameters */ # define EV_A loop /* a loop as sole argument to a function call */ # define EV_A_ EV_A, /* a loop as first of multiple arguments */ # define EV_DEFAULT_UC ev_default_loop_uc_ () /* the default loop, if initialised, as sole arg */ # define EV_DEFAULT_UC_ EV_DEFAULT_UC, /* the default loop as first of multiple arguments */ # define EV_DEFAULT ev_default_loop (0) /* the default loop as sole arg */ # define EV_DEFAULT_ EV_DEFAULT, /* the default loop as first of multiple arguments */ #else # define EV_P void # define EV_P_ # define EV_A # define EV_A_ # define EV_DEFAULT # define EV_DEFAULT_ # define EV_DEFAULT_UC # define EV_DEFAULT_UC_ # undef EV_EMBED_ENABLE #endif /* EV_INLINE is used for functions in header files */ #if __STDC_VERSION__ >= 199901L || __GNUC__ >= 3 # define EV_INLINE static inline #else # define EV_INLINE static #endif #ifdef EV_API_STATIC # define EV_API_DECL static #else # define EV_API_DECL extern #endif /* EV_PROTOTYPES can be used to switch of prototype declarations */ #ifndef EV_PROTOTYPES # define EV_PROTOTYPES 1 #endif /*****************************************************************************/ #define EV_VERSION_MAJOR 4 #define EV_VERSION_MINOR 15 /* eventmask, revents, events... */ enum { EV_UNDEF = (int)0xFFFFFFFF, /* guaranteed to be invalid */ EV_NONE = 0x00, /* no events */ EV_READ = 0x01, /* ev_io detected read will not block */ EV_WRITE = 0x02, /* ev_io detected write will not block */ EV__IOFDSET = 0x80, /* internal use only */ EV_IO = EV_READ, /* alias for type-detection */ EV_TIMER = 0x00000100, /* timer timed out */ #if EV_COMPAT3 EV_TIMEOUT = EV_TIMER, /* pre 4.0 API compatibility */ #endif EV_PERIODIC = 0x00000200, /* periodic timer timed out */ EV_SIGNAL = 0x00000400, /* signal was received */ EV_CHILD = 0x00000800, /* child/pid had status change */ EV_STAT = 0x00001000, /* stat data changed */ EV_IDLE = 0x00002000, /* event loop is idling */ EV_PREPARE = 0x00004000, /* event loop about to poll */ EV_CHECK = 0x00008000, /* event loop finished poll */ EV_EMBED = 0x00010000, /* embedded event loop needs sweep */ EV_FORK = 0x00020000, /* event loop resumed in child */ EV_CLEANUP = 0x00040000, /* event loop resumed in child */ EV_ASYNC = 0x00080000, /* async intra-loop signal */ EV_CUSTOM = 0x01000000, /* for use by user code */ EV_ERROR = (int)0x80000000 /* sent when an error occurs */ }; /* can be used to add custom fields to all watchers, while losing binary compatibility */ #ifndef EV_COMMON # define EV_COMMON void *data; #endif #ifndef EV_CB_DECLARE # define EV_CB_DECLARE(type) void (*cb)(EV_P_ struct type *w, int revents); #endif #ifndef EV_CB_INVOKE # define EV_CB_INVOKE(watcher,revents) (watcher)->cb (EV_A_ (watcher), (revents)) #endif /* not official, do not use */ #define EV_CB(type,name) void name (EV_P_ struct ev_ ## type *w, int revents) /* * struct member types: * private: you may look at them, but not change them, * and they might not mean anything to you. * ro: can be read anytime, but only changed when the watcher isn't active. * rw: can be read and modified anytime, even when the watcher is active. * * some internal details that might be helpful for debugging: * * active is either 0, which means the watcher is not active, * or the array index of the watcher (periodics, timers) * or the array index + 1 (most other watchers) * or simply 1 for watchers that aren't in some array. * pending is either 0, in which case the watcher isn't, * or the array index + 1 in the pendings array. */ #if EV_MINPRI == EV_MAXPRI # define EV_DECL_PRIORITY #elif !defined (EV_DECL_PRIORITY) # define EV_DECL_PRIORITY int priority; #endif /* shared by all watchers */ #define EV_WATCHER(type) \ int active; /* private */ \ int pending; /* private */ \ EV_DECL_PRIORITY /* private */ \ EV_COMMON /* rw */ \ EV_CB_DECLARE (type) /* private */ #define EV_WATCHER_LIST(type) \ EV_WATCHER (type) \ struct ev_watcher_list *next; /* private */ #define EV_WATCHER_TIME(type) \ EV_WATCHER (type) \ ev_tstamp at; /* private */ /* base class, nothing to see here unless you subclass */ typedef struct ev_watcher { EV_WATCHER (ev_watcher) } ev_watcher; /* base class, nothing to see here unless you subclass */ typedef struct ev_watcher_list { EV_WATCHER_LIST (ev_watcher_list) } ev_watcher_list; /* base class, nothing to see here unless you subclass */ typedef struct ev_watcher_time { EV_WATCHER_TIME (ev_watcher_time) } ev_watcher_time; /* invoked when fd is either EV_READable or EV_WRITEable */ /* revent EV_READ, EV_WRITE */ typedef struct ev_io { EV_WATCHER_LIST (ev_io) int fd; /* ro */ int events; /* ro */ } ev_io; /* invoked after a specific time, repeatable (based on monotonic clock) */ /* revent EV_TIMEOUT */ typedef struct ev_timer { EV_WATCHER_TIME (ev_timer) ev_tstamp repeat; /* rw */ } ev_timer; /* invoked at some specific time, possibly repeating at regular intervals (based on UTC) */ /* revent EV_PERIODIC */ typedef struct ev_periodic { EV_WATCHER_TIME (ev_periodic) ev_tstamp offset; /* rw */ ev_tstamp interval; /* rw */ ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) EV_THROW; /* rw */ } ev_periodic; /* invoked when the given signal has been received */ /* revent EV_SIGNAL */ typedef struct ev_signal { EV_WATCHER_LIST (ev_signal) int signum; /* ro */ } ev_signal; /* invoked when sigchld is received and waitpid indicates the given pid */ /* revent EV_CHILD */ /* does not support priorities */ typedef struct ev_child { EV_WATCHER_LIST (ev_child) int flags; /* private */ int pid; /* ro */ int rpid; /* rw, holds the received pid */ int rstatus; /* rw, holds the exit status, use the macros from sys/wait.h */ } ev_child; #if EV_STAT_ENABLE /* st_nlink = 0 means missing file or other error */ # ifdef _WIN32 typedef struct _stati64 ev_statdata; # else typedef struct stat ev_statdata; # endif /* invoked each time the stat data changes for a given path */ /* revent EV_STAT */ typedef struct ev_stat { EV_WATCHER_LIST (ev_stat) ev_timer timer; /* private */ ev_tstamp interval; /* ro */ const char *path; /* ro */ ev_statdata prev; /* ro */ ev_statdata attr; /* ro */ int wd; /* wd for inotify, fd for kqueue */ } ev_stat; #endif #if EV_IDLE_ENABLE /* invoked when the nothing else needs to be done, keeps the process from blocking */ /* revent EV_IDLE */ typedef struct ev_idle { EV_WATCHER (ev_idle) } ev_idle; #endif /* invoked for each run of the mainloop, just before the blocking call */ /* you can still change events in any way you like */ /* revent EV_PREPARE */ typedef struct ev_prepare { EV_WATCHER (ev_prepare) } ev_prepare; /* invoked for each run of the mainloop, just after the blocking call */ /* revent EV_CHECK */ typedef struct ev_check { EV_WATCHER (ev_check) } ev_check; #if EV_FORK_ENABLE /* the callback gets invoked before check in the child process when a fork was detected */ /* revent EV_FORK */ typedef struct ev_fork { EV_WATCHER (ev_fork) } ev_fork; #endif #if EV_CLEANUP_ENABLE /* is invoked just before the loop gets destroyed */ /* revent EV_CLEANUP */ typedef struct ev_cleanup { EV_WATCHER (ev_cleanup) } ev_cleanup; #endif #if EV_EMBED_ENABLE /* used to embed an event loop inside another */ /* the callback gets invoked when the event loop has handled events, and can be 0 */ typedef struct ev_embed { EV_WATCHER (ev_embed) struct ev_loop *other; /* ro */ ev_io io; /* private */ ev_prepare prepare; /* private */ ev_check check; /* unused */ ev_timer timer; /* unused */ ev_periodic periodic; /* unused */ ev_idle idle; /* unused */ ev_fork fork; /* private */ #if EV_CLEANUP_ENABLE ev_cleanup cleanup; /* unused */ #endif } ev_embed; #endif #if EV_ASYNC_ENABLE /* invoked when somebody calls ev_async_send on the watcher */ /* revent EV_ASYNC */ typedef struct ev_async { EV_WATCHER (ev_async) EV_ATOMIC_T sent; /* private */ } ev_async; # define ev_async_pending(w) (+(w)->sent) #endif /* the presence of this union forces similar struct layout */ union ev_any_watcher { struct ev_watcher w; struct ev_watcher_list wl; struct ev_io io; struct ev_timer timer; struct ev_periodic periodic; struct ev_signal signal; struct ev_child child; #if EV_STAT_ENABLE struct ev_stat stat; #endif #if EV_IDLE_ENABLE struct ev_idle idle; #endif struct ev_prepare prepare; struct ev_check check; #if EV_FORK_ENABLE struct ev_fork fork; #endif #if EV_CLEANUP_ENABLE struct ev_cleanup cleanup; #endif #if EV_EMBED_ENABLE struct ev_embed embed; #endif #if EV_ASYNC_ENABLE struct ev_async async; #endif }; /* flag bits for ev_default_loop and ev_loop_new */ enum { /* the default */ EVFLAG_AUTO = 0x00000000U, /* not quite a mask */ /* flag bits */ EVFLAG_NOENV = 0x01000000U, /* do NOT consult environment */ EVFLAG_FORKCHECK = 0x02000000U, /* check for a fork in each iteration */ /* debugging/feature disable */ EVFLAG_NOINOTIFY = 0x00100000U, /* do not attempt to use inotify */ #if EV_COMPAT3 EVFLAG_NOSIGFD = 0, /* compatibility to pre-3.9 */ #endif EVFLAG_SIGNALFD = 0x00200000U, /* attempt to use signalfd */ EVFLAG_NOSIGMASK = 0x00400000U /* avoid modifying the signal mask */ }; /* method bits to be ored together */ enum { EVBACKEND_SELECT = 0x00000001U, /* about anywhere */ EVBACKEND_POLL = 0x00000002U, /* !win */ EVBACKEND_EPOLL = 0x00000004U, /* linux */ EVBACKEND_KQUEUE = 0x00000008U, /* bsd */ EVBACKEND_DEVPOLL = 0x00000010U, /* solaris 8 */ /* NYI */ EVBACKEND_PORT = 0x00000020U, /* solaris 10 */ EVBACKEND_ALL = 0x0000003FU, /* all known backends */ EVBACKEND_MASK = 0x0000FFFFU /* all future backends */ }; #if EV_PROTOTYPES EV_API_DECL int ev_version_major (void) EV_THROW; EV_API_DECL int ev_version_minor (void) EV_THROW; EV_API_DECL unsigned int ev_supported_backends (void) EV_THROW; EV_API_DECL unsigned int ev_recommended_backends (void) EV_THROW; EV_API_DECL unsigned int ev_embeddable_backends (void) EV_THROW; EV_API_DECL ev_tstamp ev_time (void) EV_THROW; EV_API_DECL void ev_sleep (ev_tstamp delay) EV_THROW; /* sleep for a while */ /* Sets the allocation function to use, works like realloc. * It is used to allocate and free memory. * If it returns zero when memory needs to be allocated, the library might abort * or take some potentially destructive action. * The default is your system realloc function. */ EV_API_DECL void ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW; /* set the callback function to call on a * retryable syscall error * (such as failed select, poll, epoll_wait) */ EV_API_DECL void ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW; #if EV_MULTIPLICITY /* the default loop is the only one that handles signals and child watchers */ /* you can call this as often as you like */ EV_API_DECL struct ev_loop *ev_default_loop (unsigned int flags EV_CPP (= 0)) EV_THROW; #ifdef EV_API_STATIC EV_API_DECL struct ev_loop *ev_default_loop_ptr; #endif EV_INLINE struct ev_loop * ev_default_loop_uc_ (void) EV_THROW { extern struct ev_loop *ev_default_loop_ptr; return ev_default_loop_ptr; } EV_INLINE int ev_is_default_loop (EV_P) EV_THROW { return EV_A == EV_DEFAULT_UC; } /* create and destroy alternative loops that don't handle signals */ EV_API_DECL struct ev_loop *ev_loop_new (unsigned int flags EV_CPP (= 0)) EV_THROW; EV_API_DECL ev_tstamp ev_now (EV_P) EV_THROW; /* time w.r.t. timers and the eventloop, updated after each poll */ #else EV_API_DECL int ev_default_loop (unsigned int flags EV_CPP (= 0)) EV_THROW; /* returns true when successful */ EV_API_DECL ev_tstamp ev_rt_now; EV_INLINE ev_tstamp ev_now (void) EV_THROW { return ev_rt_now; } /* looks weird, but ev_is_default_loop (EV_A) still works if this exists */ EV_INLINE int ev_is_default_loop (void) EV_THROW { return 1; } #endif /* multiplicity */ /* destroy event loops, also works for the default loop */ EV_API_DECL void ev_loop_destroy (EV_P); /* this needs to be called after fork, to duplicate the loop */ /* when you want to re-use it in the child */ /* you can call it in either the parent or the child */ /* you can actually call it at any time, anywhere :) */ EV_API_DECL void ev_loop_fork (EV_P) EV_THROW; EV_API_DECL unsigned int ev_backend (EV_P) EV_THROW; /* backend in use by loop */ EV_API_DECL void ev_now_update (EV_P) EV_THROW; /* update event loop time */ #if EV_WALK_ENABLE /* walk (almost) all watchers in the loop of a given type, invoking the */ /* callback on every such watcher. The callback might stop the watcher, */ /* but do nothing else with the loop */ EV_API_DECL void ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW; #endif #endif /* prototypes */ /* ev_run flags values */ enum { EVRUN_NOWAIT = 1, /* do not block/wait */ EVRUN_ONCE = 2 /* block *once* only */ }; /* ev_break how values */ enum { EVBREAK_CANCEL = 0, /* undo unloop */ EVBREAK_ONE = 1, /* unloop once */ EVBREAK_ALL = 2 /* unloop all loops */ }; #if EV_PROTOTYPES EV_API_DECL int ev_run (EV_P_ int flags EV_CPP (= 0)); EV_API_DECL void ev_break (EV_P_ int how EV_CPP (= EVBREAK_ONE)) EV_THROW; /* break out of the loop */ /* * ref/unref can be used to add or remove a refcount on the mainloop. every watcher * keeps one reference. if you have a long-running watcher you never unregister that * should not keep ev_loop from running, unref() after starting, and ref() before stopping. */ EV_API_DECL void ev_ref (EV_P) EV_THROW; EV_API_DECL void ev_unref (EV_P) EV_THROW; /* * convenience function, wait for a single event, without registering an event watcher * if timeout is < 0, do wait indefinitely */ EV_API_DECL void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW; # if EV_FEATURE_API EV_API_DECL unsigned int ev_iteration (EV_P) EV_THROW; /* number of loop iterations */ EV_API_DECL unsigned int ev_depth (EV_P) EV_THROW; /* #ev_loop enters - #ev_loop leaves */ EV_API_DECL void ev_verify (EV_P) EV_THROW; /* abort if loop data corrupted */ EV_API_DECL void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW; /* sleep at least this time, default 0 */ EV_API_DECL void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW; /* sleep at least this time, default 0 */ /* advanced stuff for threading etc. support, see docs */ EV_API_DECL void ev_set_userdata (EV_P_ void *data) EV_THROW; EV_API_DECL void *ev_userdata (EV_P) EV_THROW; EV_API_DECL void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW; EV_API_DECL void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P) EV_THROW) EV_THROW; EV_API_DECL unsigned int ev_pending_count (EV_P) EV_THROW; /* number of pending events, if any */ EV_API_DECL void ev_invoke_pending (EV_P); /* invoke all pending watchers */ /* * stop/start the timer handling. */ EV_API_DECL void ev_suspend (EV_P) EV_THROW; EV_API_DECL void ev_resume (EV_P) EV_THROW; #endif #endif /* these may evaluate ev multiple times, and the other arguments at most once */ /* either use ev_init + ev_TYPE_set, or the ev_TYPE_init macro, below, to first initialise a watcher */ #define ev_init(ev,cb_) do { \ ((ev_watcher *)(void *)(ev))->active = \ ((ev_watcher *)(void *)(ev))->pending = 0; \ ev_set_priority ((ev), 0); \ ev_set_cb ((ev), cb_); \ } while (0) #define ev_io_set(ev,fd_,events_) do { (ev)->fd = (fd_); (ev)->events = (events_) | EV__IOFDSET; } while (0) #define ev_timer_set(ev,after_,repeat_) do { ((ev_watcher_time *)(ev))->at = (after_); (ev)->repeat = (repeat_); } while (0) #define ev_periodic_set(ev,ofs_,ival_,rcb_) do { (ev)->offset = (ofs_); (ev)->interval = (ival_); (ev)->reschedule_cb = (rcb_); } while (0) #define ev_signal_set(ev,signum_) do { (ev)->signum = (signum_); } while (0) #define ev_child_set(ev,pid_,trace_) do { (ev)->pid = (pid_); (ev)->flags = !!(trace_); } while (0) #define ev_stat_set(ev,path_,interval_) do { (ev)->path = (path_); (ev)->interval = (interval_); (ev)->wd = -2; } while (0) #define ev_idle_set(ev) /* nop, yes, this is a serious in-joke */ #define ev_prepare_set(ev) /* nop, yes, this is a serious in-joke */ #define ev_check_set(ev) /* nop, yes, this is a serious in-joke */ #define ev_embed_set(ev,other_) do { (ev)->other = (other_); } while (0) #define ev_fork_set(ev) /* nop, yes, this is a serious in-joke */ #define ev_cleanup_set(ev) /* nop, yes, this is a serious in-joke */ #define ev_async_set(ev) /* nop, yes, this is a serious in-joke */ #define ev_io_init(ev,cb,fd,events) do { ev_init ((ev), (cb)); ev_io_set ((ev),(fd),(events)); } while (0) #define ev_timer_init(ev,cb,after,repeat) do { ev_init ((ev), (cb)); ev_timer_set ((ev),(after),(repeat)); } while (0) #define ev_periodic_init(ev,cb,ofs,ival,rcb) do { ev_init ((ev), (cb)); ev_periodic_set ((ev),(ofs),(ival),(rcb)); } while (0) #define ev_signal_init(ev,cb,signum) do { ev_init ((ev), (cb)); ev_signal_set ((ev), (signum)); } while (0) #define ev_child_init(ev,cb,pid,trace) do { ev_init ((ev), (cb)); ev_child_set ((ev),(pid),(trace)); } while (0) #define ev_stat_init(ev,cb,path,interval) do { ev_init ((ev), (cb)); ev_stat_set ((ev),(path),(interval)); } while (0) #define ev_idle_init(ev,cb) do { ev_init ((ev), (cb)); ev_idle_set ((ev)); } while (0) #define ev_prepare_init(ev,cb) do { ev_init ((ev), (cb)); ev_prepare_set ((ev)); } while (0) #define ev_check_init(ev,cb) do { ev_init ((ev), (cb)); ev_check_set ((ev)); } while (0) #define ev_embed_init(ev,cb,other) do { ev_init ((ev), (cb)); ev_embed_set ((ev),(other)); } while (0) #define ev_fork_init(ev,cb) do { ev_init ((ev), (cb)); ev_fork_set ((ev)); } while (0) #define ev_cleanup_init(ev,cb) do { ev_init ((ev), (cb)); ev_cleanup_set ((ev)); } while (0) #define ev_async_init(ev,cb) do { ev_init ((ev), (cb)); ev_async_set ((ev)); } while (0) #define ev_is_pending(ev) (0 + ((ev_watcher *)(void *)(ev))->pending) /* ro, true when watcher is waiting for callback invocation */ #define ev_is_active(ev) (0 + ((ev_watcher *)(void *)(ev))->active) /* ro, true when the watcher has been started */ #define ev_cb(ev) (ev)->cb /* rw */ #if EV_MINPRI == EV_MAXPRI # define ev_priority(ev) ((ev), EV_MINPRI) # define ev_set_priority(ev,pri) ((ev), (pri)) #else # define ev_priority(ev) (+(((ev_watcher *)(void *)(ev))->priority)) # define ev_set_priority(ev,pri) ( (ev_watcher *)(void *)(ev))->priority = (pri) #endif #define ev_periodic_at(ev) (+((ev_watcher_time *)(ev))->at) #ifndef ev_set_cb # define ev_set_cb(ev,cb_) ev_cb (ev) = (cb_) #endif /* stopping (enabling, adding) a watcher does nothing if it is already running */ /* stopping (disabling, deleting) a watcher does nothing unless its already running */ #if EV_PROTOTYPES /* feeds an event into a watcher as if the event actually occurred */ /* accepts any ev_watcher type */ EV_API_DECL void ev_feed_event (EV_P_ void *w, int revents) EV_THROW; EV_API_DECL void ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW; #if EV_SIGNAL_ENABLE EV_API_DECL void ev_feed_signal (int signum) EV_THROW; EV_API_DECL void ev_feed_signal_event (EV_P_ int signum) EV_THROW; #endif EV_API_DECL void ev_invoke (EV_P_ void *w, int revents); EV_API_DECL int ev_clear_pending (EV_P_ void *w) EV_THROW; EV_API_DECL void ev_io_start (EV_P_ ev_io *w) EV_THROW; EV_API_DECL void ev_io_stop (EV_P_ ev_io *w) EV_THROW; EV_API_DECL void ev_timer_start (EV_P_ ev_timer *w) EV_THROW; EV_API_DECL void ev_timer_stop (EV_P_ ev_timer *w) EV_THROW; /* stops if active and no repeat, restarts if active and repeating, starts if inactive and repeating */ EV_API_DECL void ev_timer_again (EV_P_ ev_timer *w) EV_THROW; /* return remaining time */ EV_API_DECL ev_tstamp ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW; #if EV_PERIODIC_ENABLE EV_API_DECL void ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW; EV_API_DECL void ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW; EV_API_DECL void ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW; #endif /* only supported in the default loop */ #if EV_SIGNAL_ENABLE EV_API_DECL void ev_signal_start (EV_P_ ev_signal *w) EV_THROW; EV_API_DECL void ev_signal_stop (EV_P_ ev_signal *w) EV_THROW; #endif /* only supported in the default loop */ # if EV_CHILD_ENABLE EV_API_DECL void ev_child_start (EV_P_ ev_child *w) EV_THROW; EV_API_DECL void ev_child_stop (EV_P_ ev_child *w) EV_THROW; # endif # if EV_STAT_ENABLE EV_API_DECL void ev_stat_start (EV_P_ ev_stat *w) EV_THROW; EV_API_DECL void ev_stat_stop (EV_P_ ev_stat *w) EV_THROW; EV_API_DECL void ev_stat_stat (EV_P_ ev_stat *w) EV_THROW; # endif # if EV_IDLE_ENABLE EV_API_DECL void ev_idle_start (EV_P_ ev_idle *w) EV_THROW; EV_API_DECL void ev_idle_stop (EV_P_ ev_idle *w) EV_THROW; # endif #if EV_PREPARE_ENABLE EV_API_DECL void ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW; EV_API_DECL void ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW; #endif #if EV_CHECK_ENABLE EV_API_DECL void ev_check_start (EV_P_ ev_check *w) EV_THROW; EV_API_DECL void ev_check_stop (EV_P_ ev_check *w) EV_THROW; #endif # if EV_FORK_ENABLE EV_API_DECL void ev_fork_start (EV_P_ ev_fork *w) EV_THROW; EV_API_DECL void ev_fork_stop (EV_P_ ev_fork *w) EV_THROW; # endif # if EV_CLEANUP_ENABLE EV_API_DECL void ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW; EV_API_DECL void ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW; # endif # if EV_EMBED_ENABLE /* only supported when loop to be embedded is in fact embeddable */ EV_API_DECL void ev_embed_start (EV_P_ ev_embed *w) EV_THROW; EV_API_DECL void ev_embed_stop (EV_P_ ev_embed *w) EV_THROW; EV_API_DECL void ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW; # endif # if EV_ASYNC_ENABLE EV_API_DECL void ev_async_start (EV_P_ ev_async *w) EV_THROW; EV_API_DECL void ev_async_stop (EV_P_ ev_async *w) EV_THROW; EV_API_DECL void ev_async_send (EV_P_ ev_async *w) EV_THROW; # endif #if EV_COMPAT3 #define EVLOOP_NONBLOCK EVRUN_NOWAIT #define EVLOOP_ONESHOT EVRUN_ONCE #define EVUNLOOP_CANCEL EVBREAK_CANCEL #define EVUNLOOP_ONE EVBREAK_ONE #define EVUNLOOP_ALL EVBREAK_ALL #if EV_PROTOTYPES EV_INLINE void ev_loop (EV_P_ int flags) { ev_run (EV_A_ flags); } EV_INLINE void ev_unloop (EV_P_ int how ) { ev_break (EV_A_ how ); } EV_INLINE void ev_default_destroy (void) { ev_loop_destroy (EV_DEFAULT); } EV_INLINE void ev_default_fork (void) { ev_loop_fork (EV_DEFAULT); } #if EV_FEATURE_API EV_INLINE unsigned int ev_loop_count (EV_P) { return ev_iteration (EV_A); } EV_INLINE unsigned int ev_loop_depth (EV_P) { return ev_depth (EV_A); } EV_INLINE void ev_loop_verify (EV_P) { ev_verify (EV_A); } #endif #endif #else typedef struct ev_loop ev_loop; #endif #endif EV_CPP(}) #endif
event.h
/* * libevent compatibility header, only core events supported * * Copyright (c) 2007,2008,2010,2012 Marc Alexander Lehmann <libev@schmorp.de> * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ #ifndef EVENT_H_ #define EVENT_H_ #ifdef EV_H # include EV_H #else # include "ev.h" #endif #ifndef EVLOOP_NONBLOCK # define EVLOOP_NONBLOCK EVRUN_NOWAIT #endif #ifndef EVLOOP_ONESHOT # define EVLOOP_ONESHOT EVRUN_ONCE #endif #ifndef EV_TIMEOUT # define EV_TIMEOUT EV_TIMER #endif #ifdef __cplusplus extern "C" { #endif /* we need sys/time.h for struct timeval only */ #if !defined (WIN32) || defined (__MINGW32__) # include <time.h> /* mingw seems to need this, for whatever reason */ # include <sys/time.h> #endif struct event_base; #define EVLIST_TIMEOUT 0x01 #define EVLIST_INSERTED 0x02 #define EVLIST_SIGNAL 0x04 #define EVLIST_ACTIVE 0x08 #define EVLIST_INTERNAL 0x10 #define EVLIST_INIT 0x80 typedef void (*event_callback_fn)(int, short, void *); struct event { /* libev watchers we map onto */ union { struct ev_io io; struct ev_signal sig; } iosig; struct ev_timer to; /* compatibility slots */ struct event_base *ev_base; event_callback_fn ev_callback; void *ev_arg; int ev_fd; int ev_pri; int ev_res; int ev_flags; short ev_events; }; event_callback_fn event_get_callback (const struct event *ev); #define EV_READ EV_READ #define EV_WRITE EV_WRITE #define EV_PERSIST 0x10 #define EV_ET 0x20 /* nop */ #define EVENT_SIGNAL(ev) ((int) (ev)->ev_fd) #define EVENT_FD(ev) ((int) (ev)->ev_fd) #define event_initialized(ev) ((ev)->ev_flags & EVLIST_INIT) #define evtimer_add(ev,tv) event_add (ev, tv) #define evtimer_set(ev,cb,data) event_set (ev, -1, 0, cb, data) #define evtimer_del(ev) event_del (ev) #define evtimer_pending(ev,tv) event_pending (ev, EV_TIMEOUT, tv) #define evtimer_initialized(ev) event_initialized (ev) #define timeout_add(ev,tv) evtimer_add (ev, tv) #define timeout_set(ev,cb,data) evtimer_set (ev, cb, data) #define timeout_del(ev) evtimer_del (ev) #define timeout_pending(ev,tv) evtimer_pending (ev, tv) #define timeout_initialized(ev) evtimer_initialized (ev) #define signal_add(ev,tv) event_add (ev, tv) #define signal_set(ev,sig,cb,data) event_set (ev, sig, EV_SIGNAL | EV_PERSIST, cb, data) #define signal_del(ev) event_del (ev) #define signal_pending(ev,tv) event_pending (ev, EV_SIGNAL, tv) #define signal_initialized(ev) event_initialized (ev) const char *event_get_version (void); const char *event_get_method (void); void *event_init (void); void event_base_free (struct event_base *base); #define EVLOOP_ONCE EVLOOP_ONESHOT int event_loop (int); int event_loopexit (struct timeval *tv); int event_dispatch (void); #define _EVENT_LOG_DEBUG 0 #define _EVENT_LOG_MSG 1 #define _EVENT_LOG_WARN 2 #define _EVENT_LOG_ERR 3 typedef void (*event_log_cb)(int severity, const char *msg); void event_set_log_callback(event_log_cb cb); void event_set (struct event *ev, int fd, short events, void (*cb)(int, short, void *), void *arg); int event_once (int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv); int event_add (struct event *ev, struct timeval *tv); int event_del (struct event *ev); void event_active (struct event *ev, int res, short ncalls); /* ncalls is being ignored */ int event_pending (struct event *ev, short, struct timeval *tv); int event_priority_init (int npri); int event_priority_set (struct event *ev, int pri); struct event_base *event_base_new (void); const char *event_base_get_method (const struct event_base *); int event_base_set (struct event_base *base, struct event *ev); int event_base_loop (struct event_base *base, int); int event_base_loopexit (struct event_base *base, struct timeval *tv); int event_base_dispatch (struct event_base *base); int event_base_once (struct event_base *base, int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv); int event_base_priority_init (struct event_base *base, int fd); /* next line is different in the libevent+libev version */ /*libevent-include*/ #ifdef __cplusplus } #endif #endif
event.c
/* * libevent compatibility layer * * Copyright (c) 2007,2008,2009,2010,2012 Marc Alexander Lehmann <libev@schmorp.de> * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ #include <stddef.h> #include <stdlib.h> #include <assert.h> #ifdef EV_EVENT_H # include EV_EVENT_H #else # include "event.h" #endif #if EV_MULTIPLICITY # define dLOOPev struct ev_loop *loop = (struct ev_loop *)ev->ev_base # define dLOOPbase struct ev_loop *loop = (struct ev_loop *)base #else # define dLOOPev # define dLOOPbase #endif /* never accessed, will always be cast from/to ev_loop */ struct event_base { int dummy; }; static struct event_base *ev_x_cur; static ev_tstamp ev_tv_get (struct timeval *tv) { if (tv) { ev_tstamp after = tv->tv_sec + tv->tv_usec * 1e-6; return after ? after : 1e-6; } else return -1.; } #define EVENT_STRINGIFY(s) # s #define EVENT_VERSION(a,b) EVENT_STRINGIFY (a) "." EVENT_STRINGIFY (b) const char * event_get_version (void) { /* returns ABI, not API or library, version */ return EVENT_VERSION (EV_VERSION_MAJOR, EV_VERSION_MINOR); } const char * event_get_method (void) { return "libev"; } void *event_init (void) { #if EV_MULTIPLICITY if (ev_x_cur) ev_x_cur = (struct event_base *)ev_loop_new (EVFLAG_AUTO); else ev_x_cur = (struct event_base *)ev_default_loop (EVFLAG_AUTO); #else assert (("libev: multiple event bases not supported when not compiled with EV_MULTIPLICITY", !ev_x_cur)); ev_x_cur = (struct event_base *)(long)ev_default_loop (EVFLAG_AUTO); #endif return ev_x_cur; } const char * event_base_get_method (const struct event_base *base) { return "libev"; } struct event_base * event_base_new (void) { #if EV_MULTIPLICITY return (struct event_base *)ev_loop_new (EVFLAG_AUTO); #else assert (("libev: multiple event bases not supported when not compiled with EV_MULTIPLICITY")); return NULL; #endif } void event_base_free (struct event_base *base) { dLOOPbase; #if EV_MULTIPLICITY if (!ev_is_default_loop (loop)) ev_loop_destroy (loop); #endif } int event_dispatch (void) { return event_base_dispatch (ev_x_cur); } #ifdef EV_STANDALONE void event_set_log_callback (event_log_cb cb) { /* nop */ } #endif int event_loop (int flags) { return event_base_loop (ev_x_cur, flags); } int event_loopexit (struct timeval *tv) { return event_base_loopexit (ev_x_cur, tv); } event_callback_fn event_get_callback (const struct event *ev) { return ev->ev_callback; } static void ev_x_cb (struct event *ev, int revents) { revents &= EV_READ | EV_WRITE | EV_TIMER | EV_SIGNAL; ev->ev_res = revents; ev->ev_callback (ev->ev_fd, (short)revents, ev->ev_arg); } static void ev_x_cb_sig (EV_P_ struct ev_signal *w, int revents) { struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, iosig.sig)); if (revents & EV_ERROR) event_del (ev); ev_x_cb (ev, revents); } static void ev_x_cb_io (EV_P_ struct ev_io *w, int revents) { struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, iosig.io)); if ((revents & EV_ERROR) || !(ev->ev_events & EV_PERSIST)) event_del (ev); ev_x_cb (ev, revents); } static void ev_x_cb_to (EV_P_ struct ev_timer *w, int revents) { struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, to)); event_del (ev); ev_x_cb (ev, revents); } void event_set (struct event *ev, int fd, short events, void (*cb)(int, short, void *), void *arg) { if (events & EV_SIGNAL) ev_init (&ev->iosig.sig, ev_x_cb_sig); else ev_init (&ev->iosig.io, ev_x_cb_io); ev_init (&ev->to, ev_x_cb_to); ev->ev_base = ev_x_cur; /* not threadsafe, but it's how libevent works */ ev->ev_fd = fd; ev->ev_events = events; ev->ev_pri = 0; ev->ev_callback = cb; ev->ev_arg = arg; ev->ev_res = 0; ev->ev_flags = EVLIST_INIT; } int event_once (int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv) { return event_base_once (ev_x_cur, fd, events, cb, arg, tv); } int event_add (struct event *ev, struct timeval *tv) { dLOOPev; if (ev->ev_events & EV_SIGNAL) { if (!ev_is_active (&ev->iosig.sig)) { ev_signal_set (&ev->iosig.sig, ev->ev_fd); ev_signal_start (EV_A_ &ev->iosig.sig); ev->ev_flags |= EVLIST_SIGNAL; } } else if (ev->ev_events & (EV_READ | EV_WRITE)) { if (!ev_is_active (&ev->iosig.io)) { ev_io_set (&ev->iosig.io, ev->ev_fd, ev->ev_events & (EV_READ | EV_WRITE)); ev_io_start (EV_A_ &ev->iosig.io); ev->ev_flags |= EVLIST_INSERTED; } } if (tv) { ev->to.repeat = ev_tv_get (tv); ev_timer_again (EV_A_ &ev->to); ev->ev_flags |= EVLIST_TIMEOUT; } else { ev_timer_stop (EV_A_ &ev->to); ev->ev_flags &= ~EVLIST_TIMEOUT; } ev->ev_flags |= EVLIST_ACTIVE; return 0; } int event_del (struct event *ev) { dLOOPev; if (ev->ev_events & EV_SIGNAL) ev_signal_stop (EV_A_ &ev->iosig.sig); else if (ev->ev_events & (EV_READ | EV_WRITE)) ev_io_stop (EV_A_ &ev->iosig.io); if (ev_is_active (&ev->to)) ev_timer_stop (EV_A_ &ev->to); ev->ev_flags = EVLIST_INIT; return 0; } void event_active (struct event *ev, int res, short ncalls) { dLOOPev; if (res & EV_TIMEOUT) ev_feed_event (EV_A_ &ev->to, res & EV_TIMEOUT); if (res & EV_SIGNAL) ev_feed_event (EV_A_ &ev->iosig.sig, res & EV_SIGNAL); if (res & (EV_READ | EV_WRITE)) ev_feed_event (EV_A_ &ev->iosig.io, res & (EV_READ | EV_WRITE)); } int event_pending (struct event *ev, short events, struct timeval *tv) { short revents = 0; dLOOPev; if (ev->ev_events & EV_SIGNAL) { /* sig */ if (ev_is_active (&ev->iosig.sig) || ev_is_pending (&ev->iosig.sig)) revents |= EV_SIGNAL; } else if (ev->ev_events & (EV_READ | EV_WRITE)) { /* io */ if (ev_is_active (&ev->iosig.io) || ev_is_pending (&ev->iosig.io)) revents |= ev->ev_events & (EV_READ | EV_WRITE); } if (ev->ev_events & EV_TIMEOUT || ev_is_active (&ev->to) || ev_is_pending (&ev->to)) { revents |= EV_TIMEOUT; if (tv) { ev_tstamp at = ev_now (EV_A); tv->tv_sec = (long)at; tv->tv_usec = (long)((at - (ev_tstamp)tv->tv_sec) * 1e6); } } return events & revents; } int event_priority_init (int npri) { return event_base_priority_init (ev_x_cur, npri); } int event_priority_set (struct event *ev, int pri) { ev->ev_pri = pri; return 0; } int event_base_set (struct event_base *base, struct event *ev) { ev->ev_base = base; return 0; } int event_base_loop (struct event_base *base, int flags) { dLOOPbase; return !ev_run (EV_A_ flags); } int event_base_dispatch (struct event_base *base) { return event_base_loop (base, 0); } static void ev_x_loopexit_cb (int revents, void *base) { dLOOPbase; ev_break (EV_A_ EVBREAK_ONE); } int event_base_loopexit (struct event_base *base, struct timeval *tv) { ev_tstamp after = ev_tv_get (tv); dLOOPbase; ev_once (EV_A_ -1, 0, after >= 0. ? after : 0., ev_x_loopexit_cb, (void *)base); return 0; } struct ev_x_once { int fd; void (*cb)(int, short, void *); void *arg; }; static void ev_x_once_cb (int revents, void *arg) { struct ev_x_once *once = (struct ev_x_once *)arg; once->cb (once->fd, (short)revents, once->arg); free (once); } int event_base_once (struct event_base *base, int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv) { struct ev_x_once *once = (struct ev_x_once *)malloc (sizeof (struct ev_x_once)); dLOOPbase; if (!once) return -1; once->fd = fd; once->cb = cb; once->arg = arg; ev_once (EV_A_ fd, events & (EV_READ | EV_WRITE), ev_tv_get (tv), ev_x_once_cb, (void *)once); return 0; } int event_base_priority_init (struct event_base *base, int npri) { /*dLOOPbase;*/ return 0; }