KNN改进

转自http://ben1024.blogbus.com/logs/41046442.html

近邻的非正式描述,就是给定一个样本集exset,样本数为M,每个样本点是N维向量,对于给定目标点d,d也为N维向量,要从exset中找出与d距离最近的k个点(k<=N),当k=1时,knn问题就变成了最近邻问题。最naive的方法就是求出exset中所有样本与d的距离,进行按出小到大排序,取前k个即为所求,但这样的复杂度为O(N),当样本数大时,效率非常低下. 我实现了层次knn(HKNN)和kdtree knn,它们都是通过对树进行剪枝达到提高搜索效率的目的,hknn的剪枝原理是(以最近邻问题为例),如果目标点d与当前最近邻点x的距离,小于d与某结点Kp中心的距离加上Kp的半径,那么结点Kp中的任何一点到目标点的距离都会大于d与当前最近邻点的距离,从而它们不可能是最近邻点(K近邻问题类似于它),这个结点可以被排除掉。 kdtree对样本集所在超平面进行划分成子超平面,剪枝原理是, 如果某个子超平面与目标点的最近距离大于d与当前最近点x的距离,则该超平面上的点到d的距离都大于当前最近邻点,从而被剪掉。

matlab下实现:

  

posted @   hailong  阅读(3307)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决
点击右上角即可分享
微信分享提示