支持向量机: Maximum Margin Classifier
by pluskid, on 2010-09-08, in Machine Learning
http://blog.pluskid.org/?p=632
本文是“支持向量机系列”的第一篇,参见本系列的其他文章。
支持向量机即 Support Vector Machine,简称 SVM 。我最开始听说这头机器的名号的时候,一种神秘感就油然而生,似乎把 Support 这么一个具体的动作和 Vector 这么一个抽象的概念拼到一起,然后再做成一个 Machine ,一听就很玄了!
不过后来我才知道,原来 SVM 它并不是一头机器,而是一种算法,或者,确切地说,是一类算法,当然,这样抠字眼的话就没完没了了,比如,我说 SVM 实际上是一个分类器 (Classifier) ,但是其实也是有用 SVM 来做回归 (Regression) 的。所以,这种字眼就先不管了,还是从分类器说起吧。
SVM 一直被认为是效果最好的现成可用的分类算法之一(其实有很多人都相信,“之一”是可以去掉的)。这里“现成可用”其实是很重要的,因为一直以来学术界和工业界甚至只是学术界里做理论的和做应用的之间,都有一种“鸿沟”,有些很 fancy 或者很复杂的算法,在抽象出来的模型里很完美,然而在实际问题上却显得很脆弱,效果很差甚至完全 fail 。而 SVM 则正好是一个特例——在两边都混得开。
好了,由于 SVM 的故事本身就很长,所以废话就先只说这么多了,直接入题吧。当然,说是入贴,但是也不能一上来就是 SVM ,而是必须要从线性分类器开始讲。这里我们考虑的是一个两类的分类问题,数据点用
一个超平面,在二维空间中的例子就是一条直线。我们希望的是,通过这个超平面可以把两类数据分隔开来,比如,在超平面一边的数据点所对应的
如图所示,两种颜色的点分别代表两个类别,红颜色的线表示一个可行的超平面。在进行分类的时候,我们将数据点
从几何直观上来说,由于超平面是用于分隔两类数据的,越接近超平面的点越“难”分隔,因为如果超平面稍微转动一下,它们就有可能跑到另一边去。反之,如果是距离超平面很远的点,例如图中的右上角或者左下角的点,则很容易分辩出其类别。
实际上这两个 Criteria 是互通的,我们定义 functional margin 为
又由于
不过,这里的
显然,functional margin 和 geometrical margin 相差一个
不过这里我们有两个 margin 可以选,不过 functional margin 明显是不太适合用来最大化的一个量,因为在 hyper plane 固定以后,我们可以等比例地缩放
当然,还需要满足一些条件,根据 margin 的定义,我们有
其中
通过求解这个问题,我们就可以找到一个 margin 最大的 classifier ,如下图所示,中间的红色线条是 Optimal Hyper Plane ,另外两条线到红线的距离都是等于
到此为止,算是完成了 Maximum Margin Classifier 的介绍,通过最大化 margin ,我们使得该分类器对数据进行分类时具有了最大的 confidence (实际上,根据我们说给的一个数据集的 margin 的定义,准确的说,应该是“对最不 confidence 的数据具有了最大的 confidence”——虽然有点拗口)。不过,到现在似乎还没有一点点 Support Vector Machine 的影子。很遗憾的是,这个要等到下一次再说了,不过可以先小小地剧透一下,如上图所示,我们可以看到 hyper plane 两边的那个 gap 分别对应的两条平行的线(在高维空间中也应该是两个 hyper plane)上有一些点,显然两个 hyper plane 上都会有点存在,否则我们就可以进一步扩大 gap ,也就是增大