要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:

  1. 任务的性质:CPU密集型任务、IO密集型任务、混合型任务。
  2. 任务的优先级:高、中、低。
  3. 任务的执行时间:长、中、短。
  4. 任务的依赖性:是否依赖其他系统资源,如数据库连接等。

性质不同的任务可以交给不同规模的线程池执行。

对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。

若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。
当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出,以上只是前人总结的规律。

在这篇如何合理地估算线程池大小?文章中发现了一个估算合理值的公式

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论:
线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
以上公式与之前的CPU和IO密集型任务设置线程数基本吻合。

并发编程网上的一个问题
高并发、任务执行时间短的业务怎样使用线程池?并发不高、任务执行时间长的业务怎样使用线程池?并发高、业务执行时间长的业务怎样使用线程池?
(1)高并发、任务执行时间短的业务,线程池线程数可以设置为CPU核数+1,减少线程上下文的切换
(2)并发不高、任务执行时间长的业务要区分开看:
  a)假如是业务时间长集中在IO操作上,也就是IO密集型的任务,因为IO操作并不占用CPU,所以不要让所有的CPU闲下来,可以适当加大线程池中的线程数目,让CPU处理更多的业务
  b)假如是业务时间长集中在计算操作上,也就是计算密集型任务,这个就没办法了,和(1)一样吧,线程池中的线程数设置得少一些,减少线程上下文的切换
(3)并发高、业务执行时间长,解决这种类型任务的关键不在于线程池而在于整体架构的设计,看看这些业务里面某些数据是否能做缓存是第一步,增加服务器是第二步,至于线程池的设置,设置参考(2)。最后,业务执行时间长的问题,也可能需要分析一下,看看能不能使用中间件对任务进行拆分和解耦。

 

如何合理地估算线程池大小?

这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

如何设计线程池大小,使得可以在1s内处理完20个Transaction?

计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

再来第二种简单的但不知是否可行的方法(N为CPU总核数):

  • 如果是CPU密集型应用,则线程池大小设置为N+1
  • 如果是IO密集型应用,则线程池大小设置为2N+1

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

1 最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

1 最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论:

线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

上一种估算方法也和这个结论相合。

一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

  • 尽量提高短板操作的并行化比率,比如多线程下载技术
  • 增强短板能力,比如用NIO替代IO

第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

1 加速比=优化前系统耗时 / 优化后系统耗时

加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

1 Speedup <= 1 / (F + (1-F)/N)

当N足够大时,串行化比率F越小,加速比Speedup越大。

写到这里,我突然冒出一个问题。

是否使用线程池就一定比使用单线程高效呢?

答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

001 package pool_size_calculate;
002  
003 import java.math.BigDecimal;
004 import java.math.RoundingMode;
005 import java.util.Timer;
006 import java.util.TimerTask;
007 import java.util.concurrent.BlockingQueue;
008  
009 /**
010  * A class that calculates the optimal thread pool boundaries. It takes the
011  * desired target utilization and the desired work queue memory consumption as
012  * input and retuns thread count and work queue capacity.
013  *
014  * @author Niklas Schlimm
015  *
016  */
017 public abstract class PoolSizeCalculator {
018  
019     /**
020      * The sample queue size to calculate the size of a single {@link Runnable}
021      * element.
022      */
023     private final int SAMPLE_QUEUE_SIZE = 1000;
024  
025     /**
026      * Accuracy of test run. It must finish within 20ms of the testTime
027      * otherwise we retry the test. This could be configurable.
028      */
029     private final int EPSYLON = 20;
030  
031     /**
032      * Control variable for the CPU time investigation.
033      */
034     private volatile boolean expired;
035  
036     /**
037      * Time (millis) of the test run in the CPU time calculation.
038      */
039     private final long testtime = 3000;
040  
041     /**
042      * Calculates the boundaries of a thread pool for a given {@link Runnable}.
043      *
044      * @param targetUtilization
045      *            the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)     * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)     */     protected void calculateBoundaries(BigDecimal targetUtilization,            BigDecimal targetQueueSizeBytes) {      calculateOptimalCapacity(targetQueueSizeBytes);         Runnable task = creatTask();        start(task);        start(task); // warm up phase       long cputime = getCurrentThreadCPUTime();       start(task); // test intervall      cputime = getCurrentThreadCPUTime() - cputime;      long waittime = (testtime * 1000000) - cputime;         calculateOptimalThreadCount(cputime, waittime, targetUtilization);  }   private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {        long mem = calculateMemoryUsage();      BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(              mem), RoundingMode.HALF_UP);        System.out.println("Target queue memory usage (bytes): "                + targetQueueSizeBytes);        System.out.println("createTask() produced "                 + creatTask().getClass().getName() + " which took " + mem               + " bytes in a queue");         System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);       System.out.println("* Recommended queue capacity (bytes): "                 + queueCapacity);   }   /**      * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system   */     private void calculateOptimalThreadCount(long cpu, long wait,           BigDecimal targetUtilization) {         BigDecimal waitTime = new BigDecimal(wait);         BigDecimal computeTime = new BigDecimal(cpu);       BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()                .availableProcessors());        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)                 .multiply(                      new BigDecimal(1).add(waitTime.divide(computeTime,                              RoundingMode.HALF_UP)));        System.out.println("Number of CPU: " + numberOfCPU);        System.out.println("Target utilization: " + targetUtilization);         System.out.println("Elapsed time (nanos): " + (testtime * 1000000));        System.out.println("Compute time (nanos): " + cpu);         System.out.println("Wait time (nanos): " + wait);       System.out.println("Formula: " + numberOfCPU + " * "                + targetUtilization + " * (1 + " + waitTime + " / "                 + computeTime + ")");       System.out.println("* Optimal thread count: " + optimalthreadcount);    }   /**      * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * Based on Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue124.html).    *       * @param task   *            the runnable under investigation   */     public void start(Runnable task) {      long start = 0;         int runs = 0;       do {            if (++runs > 5) {
046                 throw new IllegalStateException("Test not accurate");
047             }
048             expired = false;
049             start = System.currentTimeMillis();
050             Timer timer = new Timer();
051             timer.schedule(new TimerTask() {
052                 public void run() {
053                     expired = true;
054                 }
055             }, testtime);
056             while (!expired) {
057                 task.run();
058             }
059             start = System.currentTimeMillis() - start;
060             timer.cancel();
061         } while (Math.abs(start - testtime) > EPSYLON);
062         collectGarbage(3);
063     }
064  
065     private void collectGarbage(int times) {
066         for (int i = 0; i < times; i++) {
067             System.gc();
068             try {
069                 Thread.sleep(10);
070             } catch (InterruptedException e) {
071                 Thread.currentThread().interrupt();
072                 break;
073             }
074         }
075     }
076  
077     /**
078      * Calculates the memory usage of a single element in a work queue. Based on
079      * Heinz Kabbutz' ideas
080      * (http://www.javaspecialists.eu/archive/Issue029.html).
081      *
082      * @return memory usage of a single {@link Runnable} element in the thread
083      *         pools work queue
084      */
085     public long calculateMemoryUsage() {
086         BlockingQueue queue = createWorkQueue();
087         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
088             queue.add(creatTask());
089         }
090         long mem0 = Runtime.getRuntime().totalMemory()
091                 - Runtime.getRuntime().freeMemory();
092         long mem1 = Runtime.getRuntime().totalMemory()
093                 - Runtime.getRuntime().freeMemory();
094         queue = null;
095         collectGarbage(15);
096         mem0 = Runtime.getRuntime().totalMemory()
097                 - Runtime.getRuntime().freeMemory();
098         queue = createWorkQueue();
099         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
100             queue.add(creatTask());
101         }
102         collectGarbage(15);
103         mem1 = Runtime.getRuntime().totalMemory()
104                 - Runtime.getRuntime().freeMemory();
105         return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
106     }
107  
108     /**
109      * Create your runnable task here.
110      *
111      * @return an instance of your runnable task under investigation
112      */
113     protected abstract Runnable creatTask();
114  
115     /**
116      * Return an instance of the queue used in the thread pool.
117      *
118      * @return queue instance
119      */
120     protected abstract BlockingQueue createWorkQueue();
121  
122     /**
123      * Calculate current cpu time. Various frameworks may be used here,
124      * depending on the operating system in use. (e.g.
125      * http://www.hyperic.com/products/sigar). The more accurate the CPU time
126      * measurement, the more accurate the results for thread count boundaries.
127      *
128      * @return current cpu time of current thread
129      */
130     protected abstract long getCurrentThreadCPUTime();
131  
132 }

然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

01 package pool_size_calculate;
02  
03 import java.io.BufferedReader;
04 import java.io.IOException;
05 import java.io.InputStreamReader;
06 import java.lang.management.ManagementFactory;
07 import java.math.BigDecimal;
08 import java.net.HttpURLConnection;
09 import java.net.URL;
10 import java.util.concurrent.BlockingQueue;
11 import java.util.concurrent.LinkedBlockingQueue;
12  
13 public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
14  
15     @Override
16     protected Runnable creatTask() {
17         return new AsyncIOTask();
18     }
19  
20     @Override
21     protected BlockingQueue createWorkQueue() {
22         return new LinkedBlockingQueue(1000);
23     }
24  
25     @Override
26     protected long getCurrentThreadCPUTime() {
27         return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
28     }
29  
30     public static void main(String[] args) {
31         PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
32         poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
33     }
34  
35 }
36  
37 /**
38  * 自定义的异步IO任务
39  * @author Will
40  *
41  */
42 class AsyncIOTask implements Runnable {
43  
44     @Override
45     public void run() {
46         HttpURLConnection connection = null;
47         BufferedReader reader = null;
48         try {
49             String getURL = "http://baidu.com";
50             URL getUrl = new URL(getURL);
51  
52             connection = (HttpURLConnection) getUrl.openConnection();
53             connection.connect();
54             reader = new BufferedReader(new InputStreamReader(
55                     connection.getInputStream()));
56  
57             String line;
58             while ((line = reader.readLine()) != null) {
59                 // empty loop
60             }
61         }
62  
63         catch (IOException e) {
64  
65         } finally {
66             if(reader != null) {
67                 try {
68                     reader.close();
69                 }
70                 catch(Exception e) {
71  
72                 }
73             }
74             connection.disconnect();
75         }
76  
77     }
78  
79 }

得到的输出如下:

01 Target queue memory usage (bytes): 100000
02 createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
03 Formula: 100000 / 40
04 * Recommended queue capacity (bytes): 2500
05 Number of CPU: 4
06 Target utilization: 1
07 Elapsed time (nanos): 3000000000
08 Compute time (nanos): 47181000
09 Wait time (nanos): 2952819000
10 Formula: 4 * 1 * (1 + 2952819000 / 47181000)
11 * Optimal thread count: 256

推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:

1 ThreadPoolExecutor pool =
2  new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 如何合理地估算线程池大小?

posted on 2018-09-21 09:27  刘达人186  阅读(6980)  评论(0编辑  收藏  举报