uva 11401

Triangle Counting

Input: Standard Input

Output: Standard Output

 

 

You are given n rods of length 1, 2…, n. You have to pick any 3 of them & build a triangle. How many distinct triangles can you make? Note that, two triangles will be considered different if they have at least 1 pair of arms with different length.

 

Input

 

The input for each case will have only a single positive integer (3<=n<=1000000). The end of input will be indicated by a case with n<3. This case should not be processed.

 

Output

 

For each test case, print the number of distinct triangles you can make.

 

Sample Input                                                  Output for Sample Input

5

8

0

3

22

题目描述:

有多少种方法可以从1,2,3,,,,n中选出三个不同的整数,可以组成三角形。

1 数学分析:

设最大边长为x的三角形与c[x]个。

y+z>x;

x-y<z<x;

枚举y的长度,就可以得到z的个数。

y==1,z无解;

y==2,z=x-1;

y==3,z=x-1 ,x-2;

......

y=x-1,z=2,3,4,,,x-1;

等差数列求和.(x-1)*(x-2)/2;

去除y==z,和重复计算的种类.

y==z有多少种呢?

y的取值从x/2+1开始到x-1为止,因为这样也能组成三角形。

c[x]=( (x-1)(x-2)/2-(x-1)/2 ) 、2;

f[x]=f[x-1]+c[x];

2  直接观察:

n为偶数时: 

2 n-1 (1)

3 n-2  (2)

4 n-3

......

m  m+1 (n-m-1)

m+1 m+2 (n-m-2)

.....

n-2 n-1   1

f[i]=f[i-1]+(i*i-4*i+4)/4;利用等差数列求和

n为奇数时:

2 n-1 (1)

3 n-2  (2)

4 n-3

......

m  m+2 (n-m-2)

m+1 m+2 (n-m-2)

.....

n-2 n-1   1

  f[i]=f[i-1]+(i-i/2-1) * (i-3) /2;

#include<stdio.h>
typedef long long i64;
 long long f[1000000];
void solve()
{

       f[3]=0;
       for(long long i=4;i<=1000000;i++)
        {
            f[i]=0;
            if( (i & 1)==0 )  //i为偶数
                f[i]=f[i-1]+(i*i-4*i+4)/4;
            else
               f[i]=f[i-1]+(i-i/2-1) * (i-3) /2;
        }

}
int main()
{
          solve();
          int n;
    while(scanf("%lld",&n)!=EOF&&n>=3)
    {
        printf("%lld\n",f[n]);
    }
    return 0;
}

  

/*
设最大边长为x的三角形有c(x)个,跟三角形的定义两边之和大于第三边有x<y+z
变形下的x-y<z<x;当y=1时无解,当y=2时只有一个解z=x-1,知道y=x-1时又x-2个解
,所以共有(x-1)(x-2)/2个解,由于题意中不能存在y=z的解所以y=z这部分解,
当x/2+1至x-1才存在y=z的可能,共有(x-1)/2个.还过有过程中每种三角形算了两遍
所以c(x)=((x-1)(x-2)/2-(x-1)/2)/2);
f(n)=c(1)+c(2)+.....+c(n);
*/
#include<iostream>
#include<cstdio>
using namespace std;
__int64 f[1000010];

void Init()
{
    __int64 i;//用int定义结果Wrong answer,不定义__int64计算过程中会溢出
    f[1]=0;
    f[2]=0;
    f[3]=0;
    for(i=4;i<=1000000;i++)
        f[i]=f[i-1]+((i-1)*(i-2)/2-(i-1)/2)/2;
}

int main()
{
    Init();
    int n;
    while(cin>>n,n>=3)
        printf("%I64d\n",f[n]);
    return 0;
}

 

posted on 2015-05-20 15:42  爱装逼的书呆子  阅读(161)  评论(0编辑  收藏  举报

导航