【Open-Falcon】Linux下安装Open-Falcon

 

一、Open-Falcon组件简述

【Open-Falcon绘图相关组件】

  • Agent:  部署在目标机器采集机器监控项
  • Transfer : 数据接收端,转发数据到后端Graph和Judge
  • Graph:操作rrd文件存储监控数据
  • Query:查询各个Graph数据,提供统一http查询接口
  • Dashboard:查询监控历史趋势图的web端
  • Task:负责一些定时任务,索引全量更新、垃圾索引清理、自身组件监控等

【Open-Falcon报警相关组件】

  • Sender :报警发送模块,控制并发度,提供发送的缓冲queue
  • UIC(FE):用户组管理,单点登录
  • Portal:配置报警策略,管理机器分组的web端
  • HBS:HeartBeat Server,心跳服务器
  • Judge:报警判断模块
  • Links:报警合并依赖的web端,存放报警详情
  • Alarm:报警时间处理器

【Open-Falcon架构图】

官网架构图:

 

 网友:

 

 

二、安装准备

1.安装Redis

http://www.cnblogs.com/xialiaoliao0911/p/7523952.html

2.安装MySQL

http://www.cnblogs.com/xialiaoliao0911/p/7523931.html

3.Open-Falocn下载地址

二进制版本:https://pan.baidu.com/s/1jOb6z-HRJ7i6nSFxf7I5Bg

4. 初始化MySQL表结构

# open-falcon所有组件都无需root账号启动,推荐使用普通账号安装,提升安全性。此处我们使用普通账号:work来安装部署所有组件
# 当然了,使用yum安装依赖的一些lib库的时候还是要有root权限的。

git clone https://github.com/open-falcon/scripts.git
cd ./scripts/
mysql -h localhost -u root --password="" < db_schema/graph-db-schema.sql
mysql -h localhost -u root --password="" < db_schema/dashboard-db-schema.sql

mysql -h localhost -u root --password="" < db_schema/portal-db-schema.sql
mysql -h localhost -u root --password="" < db_schema/links-db-schema.sql
mysql -h localhost -u root --password="" < db_schema/uic-db-schema.sql

5.解压open-falcon.tar.gz

#新建用户falcon
useadd falcon
#新建临时目录tmp
su - falcon
cd /home/falcon
mkdir tmp
#解压
tar -zxf of-release-v0.1.0.tar.gz -C ./tmp/
for x in `find ./tmp/ -name "*.tar.gz"`;do \
    app=`echo $x|cut -d '-' -f2`; \
    mkdir -p $app; \
    tar -zxf $x -C $app; \
done

 

三、安装Open-Falcon绘图相关组件

1.Agent

每台机器上,都需要部署agent,agent会自动采集预先定义的各种采集项,每隔60秒,push到transfer。

cd $WORKSPACE/agent/
mv cfg.example.json cfg.json

vim cfg.json
- 修改 transfer这个配置项的enabled为 true,表示开启向transfer发送数据的功能
- 修改 transfer这个配置项的addr为:["127.0.0.1:8433"] (改地址为transfer组件的监听地址, 为列表形式,可配置多个transfer实例的地址,用逗号分隔)

# 默认情况下(所有组件都在同一台服务器上),保持cfg.json不变即可
# cfg.json中的各配置项,可以参考 https://github.com/open-falcon/agent/blob/master/README.md

# 启动
./control start

# 查看日志
./control tail

#启动完成后,通过浏览器进行访问
http://192.168.102.141:1988/

【配置文件】

 /home/falcon/tmp/agent/cfg.json

[falcon@open-falcon-demo agent]$ more cfg.json
{
    "debug": false,
    "hostname": "open-falcon-demo",
    "ip": "192.168.102.141",
    "plugin": {
        "enabled": false,
        "dir": "./plugin",
        "git": "https://github.com/open-falcon/plugin.git",
        "logs": "./logs"
    },
    "heartbeat": {
        "enabled": true,
        "addr": "127.0.0.1:6030",
        "interval": 60,
        "timeout": 1000
    },
    "transfer": {
        "enabled": true,
        "addrs": [
            "127.0.0.1:8433",
            "127.0.0.1:8433"
        ],
        "interval": 60,
        "timeout": 1000
    },
    "http": {
        "enabled": true,
        "listen": ":1988",
        "backdoor": false
    },
    "collector": {
        "ifacePrefix": ["eth", "em"]
    },
    "ignore": {
        "cpu.busy": true,
        "df.bytes.free": true,
        "df.bytes.total": true,
        "df.bytes.used": true,
        "df.bytes.used.percent": true,
        "df.inodes.total": true,
        "df.inodes.free": true,
        "df.inodes.used": true,
        "df.inodes.used.percent": true,
        "mem.memtotal": true,
        "mem.memused": true,
        "mem.memused.percent": true,
        "mem.memfree": true,
        "mem.swaptotal": true,
        "mem.swapused": true,
        "mem.swapfree": true
    }
}

通过浏览器打开后的界面:

 

 

2.aggregator

cd $WORKSPACE/aggregator/
mv cfg.example.json cfg.json

【配置文件】

/home/falcon/tmp/aggregator/cfg.json

[falcon@open-falcon-demo aggregator]$ more cfg.json
{
    "debug": false,
    "http": {
        "enabled": true,
        "listen": "0.0.0.0:6055"
    },
    "database": {
        "addr": "root:mysql@tcp(127.0.0.1:3306)/falcon_portal?loc=Local&parseTime=true",
        "idle": 10,
        "ids": [1, -1],
        "interval": 55
    },
    "api": {
        "hostnames": "http://127.0.0.1:5050/api/group/%s/hosts.json",
        "push": "http://127.0.0.1:6060/api/push",
        "graphLast": "http://127.0.0.1:9966/graph/last"
    }
}

 

3.Transfer

transfer默认监听在:8433端口上,agent会通过jsonrpc的方式来push数据上来。

cd $WORKSPACE/transfer/
mv cfg.example.json cfg.json

# 默认情况下(所有组件都在同一台服务器上),保持cfg.json不变即可
# cfg.json中的各配置项,可以参考 https://github.com/open-falcon/transfer/blob/master/README.md
# 如有必要,请酌情修改cfg.json

# 启动transfer
./control start

# 校验服务,这里假定服务开启了6060的http监听端口。检验结果为ok表明服务正常启动。
curl -s "http://127.0.0.1:6060/health"

#查看日志
./control tail

# 停止transfer
./control stop
[falcon@open-falcon-demo transfer]$ more cfg.json 
{
    "debug": false,
    "minStep": 30,
    "http": {
        "enabled": true,
        "listen": "0.0.0.0:6060"
    },
    "rpc": {
        "enabled": true,
        "listen": "0.0.0.0:8433"
    },
    "socket": {
        "enabled": false,
        "listen": "0.0.0.0:4444",
        "timeout": 3600
    },
    "judge": {
        "enabled": true,
        "batch": 200,
        "connTimeout": 1000,
        "callTimeout": 5000,
        "maxConns": 32,
        "maxIdle": 32,
        "replicas": 500,
        "cluster": {
            "judge-00" : "127.0.0.1:6080"
        }
    },
    "graph": {
        "enabled": true,
        "batch": 200,
        "connTimeout": 1000,
        "callTimeout": 5000,
        "maxConns": 32,
        "maxIdle": 32,
        "replicas": 500,
        "cluster": {
            "graph-00" : "127.0.0.1:6070"
        }
    },
    "tsdb": {
        "enabled": false,
        "batch": 200,
        "connTimeout": 1000,
        "callTimeout": 5000,
        "maxConns": 32,
        "maxIdle": 32,
        "retry": 3,
        "address": "127.0.0.1:8088"
    }
}

 

4.Graph

graph组件是存储绘图数据、历史数据的组件。transfer会把接收到的数据,转发给graph。

cd $WORKSPACE/graph/
mv cfg.example.json cfg.json
mkdir -p /home/falcon/data/6070 #新建graph数据存储目录 # 默认情况下(所有组件都在同一台服务器上),保持cfg.json不变即可 # cfg.json中的各配置项,可以参考 https:
//github.com/open-falcon/graph/blob/master/README.md # 启动 ./control start # 查看日志 ./control tail # 校验服务,这里假定服务开启了6071的http监听端口。检验结果为ok表明服务正常启动。 curl -s "http://127.0.0.1:6071/health"
[falcon@open-falcon-demo graph]$ more cfg.json
{
        "pid": "/home/falcon/open-falcon/graph/var/app.pid",            #修改为本机实际的目录
        "log": "info",
        "debug": false,
        "http": {
                "enabled": true,
                "listen": "0.0.0.0:6071"
        },
        "rpc": {
                "enabled": true,
                "listen": "0.0.0.0:6070"
        },
        "rrd": {
                "storage": "/home/falcon/data/6070"                    #graph数据存储目录,需要手动建立
        },
        "db": {
                "dsn": "root:mysql@tcp(127.0.0.1:3306)/graph?loc=Local&parseTime=true",           #标记红色的为MySQL数据的root密码
                "maxIdle": 4
        },
        "callTimeout": 5000,
        "migrate": {
                "enabled": false,
                "concurrency": 2,
                "replicas": 500,
                "cluster": {
                        "graph-00" : "127.0.0.1:6070"
                }
        }
}

 

5.Query

query组件,绘图数据的查询接口,query组件收到用户的查询请求后,会从后端的多个graph,查询相应的数据,聚合后,再返回给用户。

cd $WORKSPACE/query/
mv cfg.example.json cfg.json
#进入query目录新建graph_backends.txt文件,并写入graph相关的内容,内容来源于graph的cfg.json的migrate>cluster
cd /home/falcon/tmp/query
vi graph_backends.txt 
graph-00 127.0.0.1:6070
# 默认情况下(所有组件都在同一台服务器上),保持cfg.json不变即可 # cfg.json中的各配置项,可以参考 https:
//github.com/open-falcon/query/blob/master/README.md # 启动 ./control start # 查看日志 ./control tail
[falcon@open-falcon-demo query]$ more cfg.json
{
    "log_level":  "info",
    "slowlog": 2000,
    "debug": "false",
    "http": {
        "enabled":  true,
        "listen":   "0.0.0.0:9966"
    },
    "graph": {
        "backends": "./graph_backends.txt",
        "reload_interval": 60,
        "connTimeout": 1000,
        "callTimeout": 5000,
        "maxConns": 32,
        "maxIdle": 32,
        "replicas": 500,
        "cluster": {
            "graph-00": "127.0.0.1:6070"
        }
    },
    "api": {
        "query": "http://127.0.0.1:9966",
        "dashboard": "http://127.0.0.1:8081",
        "max": 500
    }
}

 

6.Dashboard

dashboard是面向用户的查询界面,在这里,用户可以看到push到graph中的所有数据,并查看其趋势图。

Install dependency
#配置EPEL源,安装virtualenv环境
rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
yum install -y python-pip
pip install virtualenv

#根据MySQL实际路径,新建两个软连接

 ln -s /usr/local/mysql/lib/libmysqlclient.so.20 /usr/lib/libmysqlclient.so.20
 ln -s /usr/local/mysql/lib/libmysqlclient.so.20 /usr/lib64/libmysqlclient.so.20

#将pip_requirements.txt中的mysql-python这一行去掉,使用easy_install单独安装
#进入到virtualenv环境

 [falcon@open-falcon-demo dashboard]$ virtualenv env

 [falcon@open-falcon-demo dashboard]$ source env/bin/activate

  #安装mysql-python
 (env)[falcon@open-falcon-demo dashboard]$ easy_install mysql-python   

 

 #查看READ.me文件,找到./env/bin/pip install -r pip_requirements.txt -i http://pypi.douban.com/simple这行然后执行

 (env)[falcon@open-falcon-demo dashboard]$ ./env/bin/pip install -r pip_requirements.txt -i http://pypi.douban.com/simple

 

  #启动Dashboard

  (env)[falcon@open-falcon-demo dashboard]$ ./control start

  #查看Dashboard启动状态

  (env)[falcon@open-falcon-demo dashboard]$ ./control status

  #查看日志

  (env)[falcon@open-falcon-demo dashboard]$ ./control tail

  #退出virtualenv环境

  (env)[falcon@open-falcon-demo dashboard]$  deactivate

  #启动完成后,可通过浏览器进行访问

   http://192.168.102.141:8081/

 【配置文件】

/home/falcon/tmp/dashboard/rrd/config.py

[falcon@open-falcon-demo rrd]$ more config.py
#-*-coding:utf8-*-
import os

#-- dashboard db config --
DASHBOARD_DB_HOST = "127.0.0.1"
DASHBOARD_DB_PORT = 3306
DASHBOARD_DB_USER = "root"
DASHBOARD_DB_PASSWD = "mysql"
DASHBOARD_DB_NAME = "dashboard"

#-- graph db config --
GRAPH_DB_HOST = "127.0.0.1"
GRAPH_DB_PORT = 3306
GRAPH_DB_USER = "root"
GRAPH_DB_PASSWD = "mysql"
GRAPH_DB_NAME = "graph"

#-- app config --
DEBUG = True
SECRET_KEY = "secret-key"
SESSION_COOKIE_NAME = "open-falcon"
PERMANENT_SESSION_LIFETIME = 3600 * 24 * 30
SITE_COOKIE = "open-falcon-ck"

#-- query config --
QUERY_ADDR = "http://127.0.0.1:9966"

#BASE_DIR = "/home/falcon/open-falcon/dashboard/"
BASE_DIR="/home/falcon/data/6070"                         #和graph新建的数据存储目录相同
LOG_PATH = os.path.join(BASE_DIR,"log/")

try:
    from rrd.local_config import *
except:
    pass

 

 

7.task

cd /home/falcon/tmp/task
mv cfg.example.json  cfg.json
#修改配置文件
[falcon@open-falcon-demo task]$ more cfg.json { "debug": false, "http": { "enable": true, "listen": "0.0.0.0:8002" }, "index": { "enable": true, "dsn": "root:mysql@tcp(127.0.0.1:3306)/graph?loc=Local&parseTime=true", #MySQL的root密码 "maxIdle": 4, "autoDelete": false, "cluster":{ "test.hostname01:6071" : "0 0 0 ? * 0-5", "test.hostname02:6071" : "0 30 0 ? * 0-5" } }, "collector" : { "enable": true, "destUrl" : "http://127.0.0.1:1988/v1/push", "srcUrlFmt" : "http://%s/statistics/all", "cluster" : [ "transfer,test.hostname:6060", "graph,test.hostname:6071", "task,test.hostname:8001" ] } }
#启动task
[falcon@open-falcon-demo task]$ ./control start
#查看启动状态
[falcon@open-falcon-demo task]$ ./control status
#查看日志
[falcon@open-falcon-demo task]$ ./control tail
#重启
[falcon@open-falcon-demo task]$ ./control restart

 

 

四、安装Open-Falcon报警相关组件

1.Sender

调用各个公司提供的mail-provider和sms-provider,按照某个并发度,从redis中读取邮件、短信并发送,alarm生成的报警短信和报警邮件都是直接写入redis即可,sender来发送。

cd $WORKSPACE/sender/
mv cfg.example.json cfg.json
# vi cfg.json
# redis地址需要和后面的alarm、judge使用同一个
# queue维持默认
# worker是最多同时有多少个线程玩命得调用短信、邮件发送接口
# api要给出sms-provider和mail-provider的接口地址
./control start
[falcon@open-falcon-demo sender]$ more cfg.json
{
    "debug": false,
    "http": {
        "enabled": true,
        "listen": "0.0.0.0:6066"
    },
    "redis": {
        "addr": "127.0.0.1:6379",
        "maxIdle": 5
    },
    "queue": {
        "sms": "/sms",
        "mail": "/mail"
    },
    "worker": {
        "sms": 10,
        "mail": 50
    },
    "api": {
        "sms": "http://11.11.11.11:8000/sms",
        "mail": "http://11.11.11.11:9000/mail"
    }
}

 

2.UIC(FE)

cd $WORKSPACE/fe/
mv cfg.example.json cfg.json
# 请基于cfg.example.json 酌情修改相关配置项

# 启动
./control start

# 查看日志
./control tail

# 停止服务
./control stop
[falcon@open-falcon-demo fe]$ more cfg.json
{
    "log": "debug",
    "company": "MI",
    "http": {
        "enabled": true,
        "listen": "0.0.0.0:1234"
    },
    "cache": {
        "enabled": true,
        "redis": "127.0.0.1:6379",
        "idle": 10,
        "max": 1000,
        "timeout": {
            "conn": 10000,
            "read": 5000,
            "write": 5000
        }
    },
    "salt": "",
    "canRegister": true,
    "ldap": {
        "enabled": false,
        "addr": "ldap.example.com:389",
        "baseDN": "dc=example,dc=com",
        "bindDN": "cn=mananger,dc=example,dc=com",
        "bindPasswd": "12345678",
        "userField": "uid",
        "attributes": ["sn","mail","telephoneNumber"]
    },
    "uic": {
        "addr": "root:mysql@tcp(127.0.0.1:3306)/uic?charset=utf8&loc=Asia%2FChongqing",      #红色为MySQL数据库root密码
        "idle": 10,
        "max": 100
    },
    "shortcut": {
        "falconPortal": "http://192.168.102.141:5050/",               #Portal访问地址
        "falconDashboard": "http://192.168.102.141:8081/",            #Dashboard访问地址
        "falconAlarm": "http://192.168.102.141:9912/"                 #Alarm访问地址
    }
}

 

 

3.Portal

portal是用于配置报警策略的地方。

yum install -y python-virtualenv  # run as root

cd $WORKSPACE/portal/
virtualenv ./env

./env/bin/pip install -r pip_requirements.txt

# vi frame/config.py
# 1. 修改DB配置
# 2. SECRET_KEY设置为一个随机字符串
# 3. UIC_ADDRESS有两个,internal配置为FE模块的内网地址,portal通常是和UIC在一个网段的,
#    内网地址相互访问速度快。external是终端用户通过浏览器访问的UIC地址,很重要!
# 4. 其他配置可以使用默认的

./control start

portal默认监听在5050端口,浏览器访问即可
more  /home/falcon/tmp/portal/frame/config.py
# -*- coding:utf-8 -*-
__author__ = 'Ulric Qin'

# -- app config --
DEBUG = True

# -- db config --
DB_HOST = "127.0.0.1"
DB_PORT = 3306
DB_USER = "root"
DB_PASS = "mysql"      #数据库密码
DB_NAME = "falcon_portal"

# -- cookie config --
SECRET_KEY = "4e.5tyg8-u9ioj"
SESSION_COOKIE_NAME = "falcon-portal"
PERMANENT_SESSION_LIFETIME = 3600 * 24 * 30

UIC_ADDRESS = {
    'internal': 'http://127.0.0.1:1234',
    'external': 'http://192.168.102.141:1234',              #可通过浏览器访问的地址
}

UIC_TOKEN = ''

MAINTAINERS = ['root']
CONTACT = 'ulric.qin@gmail.com'

COMMUNITY = True

try:
    from frame.local_config import *
except Exception, e:
    print "[warning] %s" % e

 

4.HBS

心跳服务器,只依赖Portal的DB

cd $WORKSPACE/hbs/
mv cfg.example.json cfg.json
# vi cfg.json 把数据库配置配置为portal的db
./control start
如果先安装的绘图组件又来安装报警组件,那应该已经安装过agent了,hbs启动之后会监听一个http端口,一个rpc端口,agent要和hbs通信,重新去修改agent的配置cfg.json,把heartbeat那项enabled设置为true,并配置上hbs的rpc地址,./control restart重启agent,之后agent就可以和hbs心跳了
[falcon@open-falcon-demo hbs]$ more cfg.json
{
    "debug": true,
    "database": "root:mysql@tcp(127.0.0.1:3306)/falcon_portal?loc=Local&parseTime=true",
    "hosts": "",
    "maxIdle": 100,
    "listen": ":6030",
    "trustable": [""],
    "http": {
        "enabled": true,
        "listen": "0.0.0.0:6031"
    }
}

 

5.Judge

报警判断模块,judge依赖于HBS,所以得先搭建HBS

cd $WORKSPACE/judge/
mv cfg.example.json cfg.json
# vi cfg.json
# remain: 这个配置指定了judge内存中针对某个数据存多少个点,比如host01这个机器的cpu.idle的值在内存中最多存多少个,
# 配置报警的时候比如all(#3),这个#后面的数字不能超过remain-1
# hbs: 配置为hbs的地址,interval默认是60s,表示每隔60s从hbs拉取一次策略
# alarm: 报警event写入alarm中配置的redis,minInterval表示连续两个报警之间至少相隔的秒数,维持默认即可
./control start
[falcon@open-falcon-demo judge]$ more cfg.json
{
    "debug": true,
    "debugHost": "nil",
    "remain": 11, 
    "http": {
        "enabled": true,
        "listen": "0.0.0.0:6081"
    },
    "rpc": {
        "enabled": true,
        "listen": "0.0.0.0:6080"
    },
    "hbs": {
        "servers": ["127.0.0.1:6030"],
        "timeout": 300,
        "interval": 60
    },
    "alarm": {
        "enabled": true,
        "minInterval": 300,
        "queuePattern": "event:p%v",
        "redis": {
            "dsn": "127.0.0.1:6379",
            "maxIdle": 5,
            "connTimeout": 5000,
            "readTimeout": 5000,
            "writeTimeout": 5000
        }
    }
}

 

 

6.Links

links组件的作用:当多个告警被合并为一条告警信息时,短信中会附带一个告警详情的http链接地址,供用户查看详情。

# yum install -y python-virtualenv
$ cd $WORKSPACE/links/
$ virtualenv ./env
$ ./env/bin/pip install -r pip_requirements.txt
./control  start
./control  status
./control  tail 

 

cd /home/falcon/tmp/links/frame
[falcon@open-falcon-demo frame]$ more config.py
# -*- coding:utf-8 -*-
__author__ = 'Ulric Qin'

# -- app config --
DEBUG = True

# -- db config --
DB_HOST = "127.0.0.1"
DB_PORT = 3306
DB_USER = "root"
DB_PASS = "mysql"
DB_NAME = "falcon_links"

# -- cookie config --
SECRET_KEY = "4e.5tyg8-u9ioj"
SESSION_COOKIE_NAME = "falcon-links"
PERMANENT_SESSION_LIFETIME = 3600 * 24 * 30

try:
    from frame.local_config import *
except Exception, e:
    print "[warning] %s" % e

 

7.Alarm

alarm模块是处理报警event的,judge产生的报警event写入redis,alarm从redis读取,这个模块被业务搞得很糟乱,各个公司可以根据自己公司的需求重写.

cd $WORKSPACE/alarm/
mv cfg.example.json cfg.json
# vi cfg.json
# 把redis配置成与judge同一个

./control start

注意,alarm当前的版本,highQueues和lowQueues都不能为空,是个bug,稍候修复。我们可以把event:p0~event:p5配置到highQueues,把event:p6配置到lowQueues

[falcon@open-falcon-demo alarm]$ more cfg.json
{
    "debug": true,
    "uicToken": "",
    "http": {
        "enabled": true,
        "listen": "0.0.0.0:9912"
    },
    "queue": {
        "sms": "/sms",
        "mail": "/mail"
    },
    "redis": {
        "addr": "127.0.0.1:6379",
        "maxIdle": 5,
        "highQueues": [
            "event:p0",
            "event:p1",
            "event:p2",
            "event:p3",
            "event:p4",
            "event:p5"
        ],
        "lowQueues": [
            "event:p6"
        ],
        "userSmsQueue": "/queue/user/sms",
        "userMailQueue": "/queue/user/mail"
    },
    "api": {
        "portal": "http://192.168.102.141:5050",
        "uic": "http://127.0.0.1:1234",
        "links": "http://192.168.102.141:5090"
    }
}

 

PS:本例安装open-falcon时是使用falcon用户安装的。

falcon用户的家目录是:/home/falcon

所有配置好的配置文件的打包在这里:https://pan.baidu.com/s/1ii6r0-iJYYt4Mn_WzHcfcw

 

【agent】
http://192.168.102.141:1988/
【dashboard】
http://192.168.102.141:8081/
【uic/fe】
http://192.168.102.141:1234/
【Portal】
http://192.168.102.141:5050/
【alarm】
http://192.168.102.141:9912/


手动触发graph
curl -s "http://127.0.0.1:6071/index/updateAll"

 

posted @ 2018-03-11 21:34  foreverfriends  阅读(1181)  评论(0编辑  收藏  举报