Java后端防止频繁请求、重复提交
Java后端防止频繁请求、重复提交
在客户端网络慢或者服务器响应慢时,用户有时是会频繁刷新页面或重复提交表单的,这样是会给服务器造成不小的负担的,同时在添加数据时有可能造成不必要的麻烦。所以我们在后端也有必要进行防抖操作。
- 自定义注解
/** * @author Tzeao */ @Target(ElementType.METHOD) // 作用到方法上 @Retention(RetentionPolicy.RUNTIME) // 运行时有效 public @interface NoRepeatSubmit { //名称,如果不给就是要默认的 String name() default "name"; }
- 使用AOP实现该注解
/** * @author Tzeao */ @Aspect @Component @Slf4j public class NoRepeatSubmitAop { @Autowired private RedisService redisService; /** * 切入点 */ @Pointcut("@annotation(com.qwt.part_time_admin_api.common.validation.NoRepeatSubmit)") public void pt() { } @Around("pt()") public Object arround(ProceedingJoinPoint joinPoint) throws Throwable { ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes(); assert attributes != null; HttpServletRequest request = attributes.getRequest(); //这里是唯一标识 根据情况而定 String key = "1" + "-" + request.getServletPath(); // 如果缓存中有这个url视为重复提交 if (!redisService.haskey(key)) { //通过,执行下一步 Object o = joinPoint.proceed(); //然后存入redis 并且设置15s倒计时 redisService.setCacheObject(key, 0, 15, TimeUnit.SECONDS); //返回结果 return o; } else { return Result.fail(400, "请勿重复提交或者操作过于频繁!"); } } }
- serice,也可以放在工具包里面,这里我们使用到了Redis来对key和标识码进行存储和倒计时,所以在使用时还需要连接一下Redis
package com.qwt.part_time_admin_api.service; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.*; import org.springframework.stereotype.Component; import java.util.*; import java.util.concurrent.TimeUnit; /** * @author Tzeao */ @Component public class RedisService { @Autowired public RedisTemplate redisTemplate; /** * 缓存基本的对象,Integer、String、实体类等 * * @param key 缓存的键值 * @param value 缓存的值 * @return 缓存的对象 */ public <T> ValueOperations<String, T> setCacheObject(String key, T value) { ValueOperations<String, T> operation = redisTemplate.opsForValue(); operation.set(key, value); return operation; } /** * 缓存基本的对象,Integer、String、实体类等 * * @param key 缓存的键值 * @param value 缓存的值 * @param timeout 时间 * @param timeUnit 时间颗粒度 * @return 缓存的对象 */ public <T> ValueOperations<String, T> setCacheObject(String key, T value, Integer timeout, TimeUnit timeUnit) { ValueOperations<String, T> operation = redisTemplate.opsForValue(); operation.set(key, value, timeout, timeUnit); return operation; } /** * 获得缓存的基本对象。 * * @param key 缓存键值 * @return 缓存键值对应的数据 */ public <T> T getCacheObject(String key) { ValueOperations<String, T> operation = redisTemplate.opsForValue(); return operation.get(key); } /** * 删除单个对象 * * @param key */ public void deleteObject(String key) { redisTemplate.delete(key); } /** * 删除集合对象 * * @param collection */ public void deleteObject(Collection collection) { redisTemplate.delete(collection); } /** * 缓存List数据 * * @param key 缓存的键值 * @param dataList 待缓存的List数据 * @return 缓存的对象 */ public <T> ListOperations<String, T> setCacheList(String key, List<T> dataList) { ListOperations listOperation = redisTemplate.opsForList(); if (null != dataList) { int size = dataList.size(); for (int i = 0; i < size; i++) { listOperation.leftPush(key, dataList.get(i)); } } return listOperation; } /** * 获得缓存的list对象 * * @param key 缓存的键值 * @return 缓存键值对应的数据 */ public <T> List<T> getCacheList(String key) { List<T> dataList = new ArrayList<>(); ListOperations<String, T> listOperation = redisTemplate.opsForList(); Long size = listOperation.size(key); for (int i = 0; i < size; i++) { dataList.add(listOperation.index(key, i)); } return dataList; } /** * 缓存Set * * @param key 缓存键值 * @param dataSet 缓存的数据 * @return 缓存数据的对象 */ public <T> BoundSetOperations<String, T> setCacheSet(String key, Set<T> dataSet) { BoundSetOperations<String, T> setOperation = redisTemplate.boundSetOps(key); Iterator<T> it = dataSet.iterator(); while (it.hasNext()) { setOperation.add(it.next()); } return setOperation; } /** * 获得缓存的set * * @param key * @return */ public <T> Set<T> getCacheSet(String key) { Set<T> dataSet = new HashSet<>(); BoundSetOperations<String, T> operation = redisTemplate.boundSetOps(key); dataSet = operation.members(); return dataSet; } /** * 缓存Map * * @param key * @param dataMap * @return */ public <T> HashOperations<String, String, T> setCacheMap(String key, Map<String, T> dataMap) { HashOperations hashOperations = redisTemplate.opsForHash(); if (null != dataMap) { for (Map.Entry<String, T> entry : dataMap.entrySet()) { hashOperations.put(key, entry.getKey(), entry.getValue()); } } return hashOperations; } /** * 获得缓存的Map * * @param key * @return */ public <T> Map<String, T> getCacheMap(String key) { Map<String, T> map = redisTemplate.opsForHash().entries(key); return map; } /** * 获得缓存的基本对象列表 * * @param pattern 字符串前缀 * @return 对象列表 */ public Collection<String> keys(String pattern) { return redisTemplate.keys(pattern); } /** * @param key * @return */ public boolean haskey(String key) { return redisTemplate.hasKey(key); } public Long getExpire(String key) { return redisTemplate.getExpire(key); } public <T> ValueOperations<String, T> setBillObject(String key, List<Map<String, Object>> value) { ValueOperations<String, T> operation = redisTemplate.opsForValue(); operation.set(key, (T) value); return operation; } /** * 缓存list<Map<String, Object>> * * @param key 缓存的键值 * @param value 缓存的值 * @param timeout 时间 * @param timeUnit 时间颗粒度 * @return 缓存的对象 */ public <T> ValueOperations<String, T> setBillObject(String key, List<Map<String, Object>> value, Integer timeout, TimeUnit timeUnit) { ValueOperations<String, T> operation = redisTemplate.opsForValue(); operation.set(key, (T) value, timeout, timeUnit); return operation; } /** * 缓存Map * * @param key * @param dataMap * @return */ public <T> HashOperations<String, String, T> setCKdBillMap(String key, Map<String, T> dataMap) { HashOperations hashOperations = redisTemplate.opsForHash(); if (null != dataMap) { for (Map.Entry<String, T> entry : dataMap.entrySet()) { hashOperations.put(key, entry.getKey(), entry.getValue()); } } return hashOperations; } }
- 测试
@NoRepeatSubmit(name = "test") // 也可以不给名字,这样就会走默认名字 @GetMapping("test") public Result test() { return Result.success("测试阶段!"); }
转载:https://blog.csdn.net/weixin_51444617/article/details/124079172