spark-sql
Spark on Hive • Hive只是作为了存储的角色 • SparkSQL作为计算的角色 – Hive on Spark • Hive承担了一部分计算(解析SQL,优化SQL...)的和存储 • Spark作为了执行引擎的角色
Predicate n. 谓语,述语 adj. 谓语的,述语的 v. 使……基于;断言;暗示 谓词下推 (条件往下压了,)
transient 英 [ˈtrænziənt] 美 [ˈtrænsiənt; ˈtrænʃənt; ˈtrænʒənt] adj. 短暂的;路过的 n. 瞬变现象;过往旅客;候鸟 HBase 与 ES整合 https://blog.csdn.net/weixin_42257250/article/details/88953967 spark1.6 官网文档 http://spark.apache.org/docs/1.6.0/ Spark on hive spark配置使用hive node1 spark client node3 hive server node4 hive client; [root@node1 conf]# pwd /opt/sxt/spark-1.6.0/conf ## 复制node4的hive-site.xml 到node1 spark/conf下并且配置如下 [root@node1 conf]# cat hive-site.xml <?xml version="1.0" encoding="UTF-8" standalone="no"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>hive.metastore.uris</name> <value>thrift://node3:9083</value> </property> </configuration> ## 启动zk ,hdfs,yarn. ## 启动node3 的hive server [root@node3 ~]# hive --service metastore & ## 后台启动 ## 比较查询效果如下: ## 启动node4 hive 客户端 [root@node4 ~]# hive hive> show tables; hive> select coun(*) from psn; ## 启动node1 spark-shell [root@node1 bin]# ./spark-shell --master spark://node2:7077,node3:7077 scala> val hiveContext = new HiveContext(sc) <console>:27: error: not found: type HiveContext val hiveContext = new HiveContext(sc) ^ scala> import org.apache.spark.sql.hive.HiveContext scala> hiveContext.sql("show tables").show() scala> hiveContext.sql("select count(*) from psn").show() ## 使用 node1 spark 提交文件保存到hive node4 hive 中创建表 hive> create database spark; ## 准备用spark执行如下操作hive数据的jar包 package com.bjsxt.sparksql.dataframe; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.SaveMode; import org.apache.spark.sql.hive.HiveContext; /** * 如果读取hive中数据,要使用HiveContext * HiveContext.sql(sql)可以操作hive表,还可以操作虚拟的表 * */ public class CreateDFFromHive { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setAppName("hive"); JavaSparkContext sc = new JavaSparkContext(conf); //HiveContext是SQLContext的子类。 HiveContext hiveContext = new HiveContext(sc); hiveContext.sql("USE spark"); hiveContext.sql("DROP TABLE IF EXISTS student_infos"); //在hive中创建student_infos表 hiveContext.sql("CREATE TABLE IF NOT EXISTS student_infos (name STRING,age INT) row format delimited fields terminated by '\t' "); hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos"); hiveContext.sql("DROP TABLE IF EXISTS student_scores"); hiveContext.sql("CREATE TABLE IF NOT EXISTS student_scores (name STRING, score INT) row format delimited fields terminated by '\t'"); hiveContext.sql("LOAD DATA " + "LOCAL INPATH '/root/test/student_scores'" + "INTO TABLE student_scores"); /** * 查询表生成DataFrame */ // DataFrame df = hiveContext.table("student_infos");//第二种读取Hive表加载DF方式 DataFrame goodStudentsDF = hiveContext.sql("SELECT si.name, si.age, ss.score " + "FROM student_infos si " + "JOIN student_scores ss " + "ON si.name=ss.name " + "WHERE ss.score>=80"); goodStudentsDF.registerTempTable("goodstudent"); DataFrame result = hiveContext.sql("select * from goodstudent"); result.show(); /** * 将结果保存到hive表 good_student_infos */ hiveContext.sql("DROP TABLE IF EXISTS good_student_infos"); goodStudentsDF.write().mode(SaveMode.Overwrite).saveAsTable("good_student_infos"); DataFrame table = hiveContext.table("good_student_infos"); Row[] goodStudentRows = table.collect(); for(Row goodStudentRow : goodStudentRows) { System.out.println(goodStudentRow); } sc.stop(); } } 如上代码打包为 Test.jar 上传到spark lib/下 上传文件student_infos student_scores 到node1 /root/test下 student_infos zhangsan 18 lisi 19 wangwu 20 student_scores zhangsan 100 lisi 200 wangwu 300 ## 执行spark导入 ./spark-submit --master spark://node2:7077,node3:7077 ../lib/Test.jar ## 查看到数据日志。 ## 在node4 hive中查看表内容 hive> use spark; hive> select * from good_student_infos; zhangsan 18 100 lisi 19 200 wangwu 20 300 Time taken: 0.113 seconds, Fetched: 3 row(s)
sparksql/json {"name":"zhangsan","age":20} {"name":"lisi"} {"name":"wangwu","age":18} {"name":"wangwu","age":18} sparksql/person.txt 1,zhangsan,18 2,lisi,19 3,wangwu,20 package com.bjsxt.sparksql.dataframe; import org.apache.spark.SparkConf; import org.apache.spark.SparkContext; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext; /** * 读取json格式的文件创建DataFrame * * 注意 :json文件中不能嵌套json格式的内容 * * 1.读取json格式两种方式 * 2.df.show默认显示前20行,使用df.show(行数)显示多行 * 3.df.javaRDD/(scala df.rdd) 将DataFrame转换成RDD * 4.df.printSchema()显示DataFrame中的Schema信息 * 5.dataFram自带的API 操作DataFrame ,用的少 * 6.想使用sql查询,首先要将DataFrame注册成临时表:df.registerTempTable("jtable"),再使用sql,怎么使用sql?sqlContext.sql("sql语句") * 7.不能读取嵌套的json文件 * 8.df加载过来之后将列按照ascii排序了 * @author root * */ public class CreateDFFromJosonFile { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("jsonfile"); SparkContext sc = new SparkContext(conf); //创建sqlContext SQLContext sqlContext = new SQLContext(sc); /** * DataFrame的底层是一个一个的RDD RDD的泛型是Row类型。 * 以下两种方式都可以读取json格式的文件 */ DataFrame df = sqlContext.read().format("json").load("./sparksql/json"); // DataFrame df2 = sqlContext.read().json("sparksql/json"); // df2.show(); /** * 显示 DataFrame中的内容,默认显示前20行。如果现实多行要指定多少行show(行数) * 注意:当有多个列时,显示的列先后顺序是按列的ascii码先后显示。 */ df.show(100); /** * DataFrame转换成RDD */ // JavaRDD<Row> javaRDD = df.javaRDD(); /** * 树形的形式显示schema信息 */ // df.printSchema(); /** * dataFram自带的API 操作DataFrame */ //select name from table // df.select("name").show(); //select name ,age+10 as addage from table // df.select(df.col("name"),df.col("age").plus(10).alias("addage")).show(); //select name ,age from table where age>19 // df.select(df.col("name"),df.col("age")).where(df.col("age").gt(19)).show(); //select age,count(*) from table group by age // df.groupBy(df.col("age")).count().show(); /** * 将DataFrame注册成临时的一张表,这张表相当于临时注册到内存中,是逻辑上的表,不会雾化到磁盘 */ // df.registerTempTable("jtable"); // DataFrame sql = sqlContext.sql("select age,count(*) as gg from jtable group by age"); // sql.show(); // DataFrame sql2 = sqlContext.sql("select name,age from jtable"); // sql2.show(); sc.stop(); } } package com.bjsxt.sparksql.dataframe; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.SQLContext; /** * 读取json格式的RDD创建DF * @author root * */ public class CreateDFFromJsonRDD { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("jsonRDD"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> nameRDD = sc.parallelize(Arrays.asList( "{'name':'zhangsan','age':\"18\"}", "{\"name\":\"lisi\",\"age\":\"19\"}", "{\"name\":\"wangwu\",\"age\":\"20\"}" )); JavaRDD<String> scoreRDD = sc.parallelize(Arrays.asList( "{\"name\":\"zhangsan\",\"score\":\"100\"}", "{\"name\":\"lisi\",\"score\":\"200\"}", "{\"name\":\"wangwu\",\"score\":\"300\"}" )); DataFrame namedf = sqlContext.read().json(nameRDD); namedf.show(); DataFrame scoredf = sqlContext.read().json(scoreRDD); scoredf.show(); //SELECT t1.name,t1.age,t2.score from t1, t2 where t1.name = t2.name //daframe原生api使用 // namedf.join(scoredf, namedf.col("name").$eq$eq$eq(scoredf.col("name"))) // .select(namedf.col("name"),namedf.col("age"),scoredf.col("score")).show(); //注册成临时表使用 namedf.registerTempTable("name"); scoredf.registerTempTable("score"); /** * 如果自己写的sql查询得到的DataFrame结果中的列会按照 查询的字段顺序返回 */ DataFrame result = sqlContext.sql("select name.name,name.age,score.score " + "from name join score " + "on name.name = score.name"); result.show(); sc.stop(); } } package com.bjsxt.sparksql.dataframe; import java.util.HashMap; import java.util.Map; import java.util.Properties; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.DataFrameReader; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.SaveMode; public class CreateDFFromMysql { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("mysql"); /** * 配置join或者聚合操作shuffle数据时分区的数量 */ conf.set("spark.sql.shuffle.partitions", "1"); // 默认200个分区 JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); /** * 第一种方式读取MySql数据库表,加载为DataFrame */ Map<String, String> options = new HashMap<String,String>(); options.put("url", "jdbc:mysql://192.168.112.101:3306/spark"); options.put("driver", "com.mysql.jdbc.Driver"); options.put("user", "root"); options.put("password", "123456"); options.put("dbtable", "person"); DataFrame person = sqlContext.read().format("jdbc").options(options).load(); person.show(); person.registerTempTable("person1"); options.put("dbtable", "score"); DataFrame score = sqlContext.read().format("jdbc").options(options).load(); score.registerTempTable("score1"); score.show(); /** * 第二种方式读取MySql数据表加载为DataFrame */ // DataFrameReader reader = sqlContext.read().format("jdbc"); // reader.option("url", "jdbc:mysql://192.168.112.101:3306/spark"); // reader.option("driver", "com.mysql.jdbc.Driver"); // reader.option("user", "root"); // reader.option("password", "123456"); // reader.option("dbtable", "score"); // DataFrame score = reader.load(); // score.show(); // score.registerTempTable("score1"); DataFrame result = sqlContext.sql("select person1.id,person1.name,person1.age,score1.score " + "from person1,score1 " + "where person1.name = score1.name"); result.show(); /** * 将DataFrame结果保存到Mysql中 */ Properties properties = new Properties(); properties.setProperty("user", "root"); properties.setProperty("password", "123456"); /** * SaveMode: * Overwrite:覆盖 * Append:追加 * ErrorIfExists:如果存在就报错 * Ignore:如果存在就忽略 * */ result.write().mode(SaveMode.Overwrite).jdbc("jdbc:mysql://192.168.112.101:3306/spark", "result", properties); System.out.println("----Finish----"); sc.stop(); } } // CreateDFFromParquet 生成Parquet压缩数据,在读取 package com.bjsxt.sparksql.dataframe; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.SaveMode; public class CreateDFFromParquet { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("parquet"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> jsonRDD = sc.textFile("sparksql/json"); DataFrame df = sqlContext.read().json(jsonRDD); // sqlContext.read().format("json").load("./spark/json"); // df.show(); /** * 将DataFrame保存成parquet文件, * SaveMode指定存储文件时的保存模式: * Overwrite:覆盖 * Append:追加 * ErrorIfExists:如果存在就报错 * Ignore:如果存在就忽略 * 保存成parquet文件有以下两种方式: */ df.write().mode(SaveMode.Overwrite).format("parquet").save("./sparksql/parquet"); // df.write().mode(SaveMode.Ignore).parquet("./sparksql/parquet"); /** * 加载parquet文件成DataFrame * 加载parquet文件有以下两种方式: */ DataFrame load = sqlContext.read().format("parquet").load("./sparksql/parquet"); // load = sqlContext.read().parquet("./sparksql/parquet"); load.show(); sc.stop(); } } package com.bjsxt.sparksql.dataframe; import java.io.Serializable; public class Person implements Serializable{ /** * */ private static final long serialVersionUID = 1L; private String id ; private String name; private Integer age; public String getId() { return id; } public void setId(String id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Integer getAge() { return age; } public void setAge(Integer age) { this.age = age; } @Override public String toString() { return "Person [id=" + id + ", name=" + name + ", age=" + age + "]"; } } package com.bjsxt.sparksql.dataframe; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.VoidFunction; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext; /** * 通过反射的方式将非json格式的RDD转换成DataFrame * 注意:这种方式不推荐使用 * @author root * */ public class CreateDFFromRDDWithReflect { public static void main(String[] args) { /** * 注意: * 1.自定义类要实现序列化接口 * 2.自定义类访问级别必须是Public * 3.RDD转成DataFrame会把自定义类中字段的名称按assci码排序 */ SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("RDD"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> lineRDD = sc.textFile("sparksql/person.txt"); // final Person p = new Person(); // 需要序列化 implements Serializable JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() { /** * */ private static final long serialVersionUID = 1L; @Override public Person call(String line) throws Exception { final Person p = new Person(); p.setId(line.split(",")[0]); p.setName(line.split(",")[1]); p.setAge(Integer.valueOf(line.split(",")[2])); return p; } }); /** * 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame * 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame */ DataFrame df = sqlContext.createDataFrame(personRDD, Person.class); df.show(); df.printSchema(); df.registerTempTable("person"); DataFrame sql = sqlContext.sql("select name,id,age from person where id = 2"); sql.show(); /** * 将DataFrame转成JavaRDD * 注意: * 1.可以使用row.getInt(0),row.getString(1)...通过下标获取返回Row类型的数据,但是要注意列顺序问题---不常用 * 2.可以使用row.getAs("列名")来获取对应的列值。 * */ JavaRDD<Row> javaRDD = df.javaRDD(); JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() { /** * */ private static final long serialVersionUID = 1L; @Override public Person call(Row row) throws Exception { Person p = new Person(); // p.setId(row.getString(0)); // p.setName(row.getString(1)); // p.setAge(row.getInt(2)); // // p.setId(row.getString(1)); // p.setName(row.getString(2)); // p.setAge(row.getInt(0)); // p.setId(row.getAs("id")+""); p.setName((String)row.getAs("name")); p.setAge((Integer)row.getAs("age")); return p; } }); map.foreach(new VoidFunction<Person>() { /** * */ private static final long serialVersionUID = 1L; @Override public void call(Person person) throws Exception { System.out.println(person); } }); sc.stop(); } } /** * */ package com.bjsxt.sparksql.dataframe; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.VoidFunction; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; /** * 动态创建Schema将非json格式RDD转换成DataFrame * @author root * */ public class CreateDFFromRDDWithStruct { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("rddStruct"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> lineRDD = sc.textFile("./sparksql/person.txt"); /** * 转换成Row类型的RDD */ JavaRDD<Row> rowRDD = lineRDD.map(new Function<String, Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public Row call(String s) throws Exception { return RowFactory.create( s.split(",")[0], s.split(",")[1], Integer.valueOf(s.split(",")[2] )); } }); /** * 动态构建DataFrame中的元数据,一般来说这里的字段可以来源自字符串,也可以来源于外部数据库 */ List<StructField> asList =Arrays.asList( DataTypes.createStructField("id", DataTypes.StringType, true), DataTypes.createStructField("name", DataTypes.StringType, true), DataTypes.createStructField("age", DataTypes.IntegerType, true) ); StructType schema = DataTypes.createStructType(asList); DataFrame df = sqlContext.createDataFrame(rowRDD, schema); df.show(); // JavaRDD<Row> javaRDD = df.javaRDD(); // javaRDD.foreach(new VoidFunction<Row>() { // // /** // * // */ // private static final long serialVersionUID = 1L; // // @Override // public void call(Row row) throws Exception { // System.out.println(row.getString(0)); // } // }); sc.stop(); } } package com.bjsxt.sparksql.dataframe; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.VoidFunction; import org.apache.spark.rdd.RDD; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext; import scala.Function1; import scala.runtime.BoxedUnit; public class DataFrameTest { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("RDD"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> lineRDD = sc.textFile("sparksql/person.txt"); JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() { /** * */ private static final long serialVersionUID = 1L; @Override public Person call(String line) throws Exception { Person p = new Person(); p.setId(line.split(",")[0]); p.setName(line.split(",")[1]); p.setAge(Integer.valueOf(line.split(",")[2])); return p; } }); /** * 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame * 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame */ DataFrame df = sqlContext.createDataFrame(personRDD, Person.class); df.show(); df.printSchema(); df.registerTempTable("person"); DataFrame resultDataFrame = sqlContext.sql("select name,age,id from person where id = 2"); JavaRDD<Row> javaRDD = resultDataFrame.javaRDD(); /** * 自己写的sql语句查询出来的DataFrame显示表的时候会安装查询的字段来显示,字段不会按照Ascii码来排序 */ javaRDD.foreach(new VoidFunction<Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public void call(Row row) throws Exception { System.out.println("name = "+ row.getAs(0)); System.out.println("name = "+ row.getAs("name")); System.out.println("name = "+ row.getString(0)); System.out.println("age = "+ row.getAs(1)); System.out.println("age = "+ row.getAs("age")); System.out.println("age = "+ row.getInt(1)); System.out.println("id = "+ row.getAs(2)); System.out.println("id = "+ row.getAs("id")); System.out.println("id = "+ row.getString(2)); } }); // /** // * 将DataFrame转成JavaRDD // * 注意: // * 1.可以使用row.getInt(0),row.getString(1)...通过下标获取返回Row类型的数据,但是要注意列顺序问题---不常用 // * 2.可以使用row.getAs("列名")来获取对应的列值。 // * // */ // JavaRDD<Row> javaRDD = df.javaRDD(); // JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() { // // /** // * // */ // private static final long serialVersionUID = 1L; // // @Override // public Person call(Row row) throws Exception { // Person p = new Person(); // // //// p.setId(row.getString(0)); //// p.setName(row.getString(1)); //// p.setAge(row.getInt(2)); // //// p.setId(row.getString(1)); //// p.setName(row.getString(2)); //// p.setAge(row.getInt(0)); // // p.setId((String)row.getAs("id")); // p.setName((String)row.getAs("name")); // p.setAge((Integer)row.getAs("age")); // return p; // } // }); // map.foreach(new VoidFunction<Person>() { // // /** // * // */ // private static final long serialVersionUID = 1L; // // @Override // public void call(Person t) throws Exception { // System.out.println(t); // } // }); sc.stop(); } }
UDF UDAF select name ,sum(xx) from t group by name ; 与聚合函数sum(xx) 出现的字段name,也必须出现在group by 中。 package com.bjsxt.sparksql.udf_udaf; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.api.java.UDF1; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; /** * UDF 用户自定义函数 * @author root * */ public class UDF { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local"); conf.setAppName("udf"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> parallelize = sc.parallelize(Arrays.asList("zhangsan","lisi","wangwu")); JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public Row call(String s) throws Exception { return RowFactory.create(s); } }); /** * 动态创建Schema方式加载DF */ List<StructField> fields = new ArrayList<StructField>(); fields.add(DataTypes.createStructField("name", DataTypes.StringType,true)); StructType schema = DataTypes.createStructType(fields); DataFrame df = sqlContext.createDataFrame(rowRDD,schema); df.registerTempTable("user"); /** * 根据UDF函数参数的个数来决定是实现哪一个UDF UDF1,UDF2。。。。UDF1xxx */ sqlContext.udf().register("StrLen", new UDF1<String,Integer>() { /** * */ private static final long serialVersionUID = 1L; @Override public Integer call(String t1) throws Exception { return t1.length(); } }, DataTypes.IntegerType); sqlContext.sql("select name ,StrLen(name) as length from user").show(); // sqlContext.udf().register("StrLen",new UDF2<String, Integer, Integer>() { // // /** // * // */ // private static final long serialVersionUID = 1L; // // @Override // public Integer call(String t1, Integer t2) throws Exception { // return t1.length()+t2; // } // } ,DataTypes.IntegerType ); // sqlContext.sql("select name ,StrLen(name,10) as length from user").show(); sc.stop(); } } package com.bjsxt.sparksql.udf_udaf; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.expressions.MutableAggregationBuffer; import org.apache.spark.sql.expressions.UserDefinedAggregateFunction; import org.apache.spark.sql.types.DataType; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; /** * UDAF 用户自定义聚合函数 * @author root * */ public class UDAF { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("udaf"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> parallelize = sc.parallelize( Arrays.asList("zhangsan","lisi","wangwu","zhangsan","zhangsan","lisi")); JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public Row call(String s) throws Exception { return RowFactory.create(s); } }); List<StructField> fields = new ArrayList<StructField>(); fields.add(DataTypes.createStructField("name", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); DataFrame df = sqlContext.createDataFrame(rowRDD, schema); df.registerTempTable("user"); /** * 注册一个UDAF函数,实现统计相同值得个数 * 注意:这里可以自定义一个类继承UserDefinedAggregateFunction类也是可以的 */ sqlContext.udf().register("StringCount",new UserDefinedAggregateFunction() { /** * */ private static final long serialVersionUID = 1L; /** * 初始化一个内部的自己定义的值,在Aggregate之前每组数据的初始化结果 */ @Override public void initialize(MutableAggregationBuffer buffer) { buffer.update(0, 0); } /** * 更新 可以认为一个一个地将组内的字段值传递进来 实现拼接的逻辑 * buffer.getInt(0)获取的是上一次聚合后的值 * 相当于map端的combiner,combiner就是对每一个map task的处理结果进行一次小聚合 * 大聚和发生在reduce端. * 这里即是:在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算 */ @Override public void update(MutableAggregationBuffer buffer, Row arg1) { buffer.update(0, buffer.getInt(0)+1); } /** * 合并 update操作,可能是针对一个分组内的部分数据,在某个节点上发生的 但是可能一个分组内的数据,会分布在多个节点上处理 * 此时就要用merge操作,将各个节点上分布式拼接好的串,合并起来 * buffer1.getInt(0) : 大聚合的时候 上一次聚合后的值 * buffer2.getInt(0) : 这次计算传入进来的update的结果 * 这里即是:最后在分布式节点完成后需要进行全局级别的Merge操作 */ @Override public void merge(MutableAggregationBuffer buffer1, Row buffer2) { buffer1.update(0, buffer1.getInt(0) + buffer2.getInt(0)); } /** * 在进行聚合操作的时候所要处理的数据的结果的类型 */ @Override public StructType bufferSchema() { return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("bffer", DataTypes.IntegerType, true))); } /** * 最后返回一个和dataType方法的类型要一致的类型,返回UDAF最后的计算结果 */ @Override public Object evaluate(Row row) { return row.getInt(0); } /** * 指定UDAF函数计算后返回的结果类型 */ @Override public DataType dataType() { return DataTypes.IntegerType; } /** * 指定输入字段的字段及类型 */ @Override public StructType inputSchema() { return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("namexxx", DataTypes.StringType, true))); } /** * 确保一致性 一般用true,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果。 */ @Override public boolean deterministic() { return true; } }); sqlContext.sql("select name ,StringCount(name) as strCount from user group by name").show(); sc.stop(); } }
Xshell 配置选中右键粘贴
开窗函数一定在hive中使用 启动 zk hdfs ,yarn, hive spark. 将如下代码打为jar包(不选择main方法,与上边的Test.jar打包刻意区别一下),上传到node1 spark client, 并且上传文件 sales. package com.bjsxt.sparksql.udf_udaf; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.expressions.MutableAggregationBuffer; import org.apache.spark.sql.expressions.UserDefinedAggregateFunction; import org.apache.spark.sql.types.DataType; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; /** * UDAF 用户自定义聚合函数 * @author root * */ public class UDAF { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("udaf"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> parallelize = sc.parallelize( Arrays.asList("zhangsan","lisi","wangwu","zhangsan","zhangsan","lisi")); JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public Row call(String s) throws Exception { return RowFactory.create(s); } }); List<StructField> fields = new ArrayList<StructField>(); fields.add(DataTypes.createStructField("name", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); DataFrame df = sqlContext.createDataFrame(rowRDD, schema); df.registerTempTable("user"); /** * 注册一个UDAF函数,实现统计相同值得个数 * 注意:这里可以自定义一个类继承UserDefinedAggregateFunction类也是可以的 */ sqlContext.udf().register("StringCount",new UserDefinedAggregateFunction() { /** * */ private static final long serialVersionUID = 1L; /** * 初始化一个内部的自己定义的值,在Aggregate之前每组数据的初始化结果 */ @Override public void initialize(MutableAggregationBuffer buffer) { buffer.update(0, 0); } /** * 更新 可以认为一个一个地将组内的字段值传递进来 实现拼接的逻辑 * buffer.getInt(0)获取的是上一次聚合后的值 * 相当于map端的combiner,combiner就是对每一个map task的处理结果进行一次小聚合 * 大聚和发生在reduce端. * 这里即是:在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算 */ @Override public void update(MutableAggregationBuffer buffer, Row arg1) { buffer.update(0, buffer.getInt(0)+1); } /** * 合并 update操作,可能是针对一个分组内的部分数据,在某个节点上发生的 但是可能一个分组内的数据,会分布在多个节点上处理 * 此时就要用merge操作,将各个节点上分布式拼接好的串,合并起来 * buffer1.getInt(0) : 大聚合的时候 上一次聚合后的值 * buffer2.getInt(0) : 这次计算传入进来的update的结果 * 这里即是:最后在分布式节点完成后需要进行全局级别的Merge操作 */ @Override public void merge(MutableAggregationBuffer buffer1, Row buffer2) { buffer1.update(0, buffer1.getInt(0) + buffer2.getInt(0)); } /** * 在进行聚合操作的时候所要处理的数据的结果的类型 */ @Override public StructType bufferSchema() { return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("bffer", DataTypes.IntegerType, true))); } /** * 最后返回一个和dataType方法的类型要一致的类型,返回UDAF最后的计算结果 */ @Override public Object evaluate(Row row) { return row.getInt(0); } /** * 指定UDAF函数计算后返回的结果类型 */ @Override public DataType dataType() { return DataTypes.IntegerType; } /** * 指定输入字段的字段及类型 */ @Override public StructType inputSchema() { return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("namexxx", DataTypes.StringType, true))); } /** * 确保一致性 一般用true,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果。 */ @Override public boolean deterministic() { return true; } }); sqlContext.sql("select name ,StringCount(name) as strCount from user group by name").show(); sc.stop(); } } sales文件 1 A 1 1 A 2 1 B 3 1 A 4 1 C 5 1 B 6 1 C 7 1 A 8 1 D 9 1 F 10 2 B 11 2 D 12 2 A 13 2 E 14 2 F 15 2 F 16 2 A 17 2 G 18 2 B 19 2 C 20 3 B 21 3 F 22 3 A 23 node1 提交 ./spark-submit --master spark://node2:7077,node3:7077 --class com.bjsxt.sparksql.windowfun.RowNumberWindowFun ../lib/Test.jar ## 在node4查看hive 中 hive> use spark; hive> select * from sales_result;