spark-sql

 

Spark on Hive
• Hive只是作为了存储的角色
• SparkSQL作为计算的角色
– Hive on Spark
• Hive承担了一部分计算(解析SQL,优化SQL...)的和存储
• Spark作为了执行引擎的角色

 

 

 

 

 

 

 

Predicate
n. 谓语,述语
adj. 谓语的,述语的
v. 使……基于;断言;暗示

谓词下推 (条件往下压了,)

 

 

 

 

 

transient
英 [ˈtrænziənt]  美 [ˈtrænsiənt; ˈtrænʃənt; ˈtrænʒənt] 
adj. 短暂的;路过的
n. 瞬变现象;过往旅客;候鸟


HBase 与 ES整合
https://blog.csdn.net/weixin_42257250/article/details/88953967


spark1.6 官网文档
http://spark.apache.org/docs/1.6.0/


Spark on hive

spark配置使用hive
node1 spark client
node3 hive server node4 hive client;

[root@node1 conf]# pwd
/opt/sxt/spark-1.6.0/conf

## 复制node4的hive-site.xml 到node1 spark/conf下并且配置如下
[root@node1 conf]# cat hive-site.xml 
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration> 
<property> 
  <name>hive.metastore.uris</name> 
  <value>thrift://node3:9083</value> 
</property>
 
</configuration>

## 启动zk ,hdfs,yarn.
## 启动node3 的hive server 
[root@node3 ~]# hive --service metastore &   ## 后台启动

## 比较查询效果如下:
## 启动node4 hive 客户端
[root@node4 ~]# hive
hive> show tables;
hive> select coun(*) from psn;

## 启动node1 spark-shell
[root@node1 bin]# ./spark-shell --master spark://node2:7077,node3:7077 
scala> val hiveContext = new HiveContext(sc)
<console>:27: error: not found: type HiveContext
         val hiveContext = new HiveContext(sc)
                               ^

scala> import org.apache.spark.sql.hive.HiveContext
scala> hiveContext.sql("show tables").show()
scala> hiveContext.sql("select count(*) from psn").show()

## 使用 node1 spark 提交文件保存到hive


node4 hive 中创建表
hive> create database spark;

## 准备用spark执行如下操作hive数据的jar包


package com.bjsxt.sparksql.dataframe;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.hive.HiveContext;
/**
 * 如果读取hive中数据,要使用HiveContext
 * HiveContext.sql(sql)可以操作hive表,还可以操作虚拟的表
 *
 */
public class CreateDFFromHive {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setAppName("hive");
		JavaSparkContext sc = new JavaSparkContext(conf);
		//HiveContext是SQLContext的子类。
		HiveContext hiveContext = new HiveContext(sc);
		hiveContext.sql("USE spark");
		hiveContext.sql("DROP TABLE IF EXISTS student_infos");
		//在hive中创建student_infos表
		hiveContext.sql("CREATE TABLE IF NOT EXISTS student_infos (name STRING,age INT) row format delimited fields terminated by '\t' ");
		hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos");
		
		hiveContext.sql("DROP TABLE IF EXISTS student_scores"); 
		hiveContext.sql("CREATE TABLE IF NOT EXISTS student_scores (name STRING, score INT) row format delimited fields terminated by '\t'");  
		hiveContext.sql("LOAD DATA "
				+ "LOCAL INPATH '/root/test/student_scores'"
				+ "INTO TABLE student_scores");
		/**
		 * 查询表生成DataFrame
		 */
//		DataFrame df = hiveContext.table("student_infos");//第二种读取Hive表加载DF方式
		DataFrame goodStudentsDF = hiveContext.sql("SELECT si.name, si.age, ss.score "
				+ "FROM student_infos si "
				+ "JOIN student_scores ss "
				+ "ON si.name=ss.name "
				+ "WHERE ss.score>=80");
		
		
		goodStudentsDF.registerTempTable("goodstudent");
		DataFrame result = hiveContext.sql("select * from goodstudent");
		result.show();
		
		/**
		 * 将结果保存到hive表 good_student_infos
		 */
		hiveContext.sql("DROP TABLE IF EXISTS good_student_infos");
		goodStudentsDF.write().mode(SaveMode.Overwrite).saveAsTable("good_student_infos");
		DataFrame table = hiveContext.table("good_student_infos");
		Row[] goodStudentRows = table.collect();  
		for(Row goodStudentRow : goodStudentRows) {
			System.out.println(goodStudentRow);  
		}
		sc.stop();
	}
}


如上代码打包为 Test.jar 上传到spark   lib/下
上传文件student_infos student_scores 到node1 /root/test下
student_infos
zhangsan	18
lisi	19
wangwu	20

student_scores
zhangsan	100
lisi	200
wangwu	300

## 执行spark导入

./spark-submit --master spark://node2:7077,node3:7077 ../lib/Test.jar
## 查看到数据日志。

## 在node4 hive中查看表内容

hive> use spark;

hive> select * from good_student_infos;
zhangsan	18	100
lisi	19	200
wangwu	20	300
Time taken: 0.113 seconds, Fetched: 3 row(s)
sparksql/json
{"name":"zhangsan","age":20}
{"name":"lisi"}
{"name":"wangwu","age":18}
{"name":"wangwu","age":18}

sparksql/person.txt
1,zhangsan,18
2,lisi,19
3,wangwu,20


package com.bjsxt.sparksql.dataframe;

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
/**
 * 读取json格式的文件创建DataFrame
 * 
 * 注意 :json文件中不能嵌套json格式的内容
 * 
 * 1.读取json格式两种方式
 * 2.df.show默认显示前20行,使用df.show(行数)显示多行
 * 3.df.javaRDD/(scala df.rdd) 将DataFrame转换成RDD
 * 4.df.printSchema()显示DataFrame中的Schema信息
 * 5.dataFram自带的API 操作DataFrame ,用的少
 * 6.想使用sql查询,首先要将DataFrame注册成临时表:df.registerTempTable("jtable"),再使用sql,怎么使用sql?sqlContext.sql("sql语句")
 * 7.不能读取嵌套的json文件
 * 8.df加载过来之后将列按照ascii排序了
 * @author root
 *
 */
public class CreateDFFromJosonFile {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("jsonfile");
		SparkContext sc = new SparkContext(conf);
		
		//创建sqlContext
		SQLContext sqlContext = new SQLContext(sc);
		
		/**
		 * DataFrame的底层是一个一个的RDD  RDD的泛型是Row类型。
		 * 以下两种方式都可以读取json格式的文件
		 */
		DataFrame df = sqlContext.read().format("json").load("./sparksql/json");
//		DataFrame df2 = sqlContext.read().json("sparksql/json");
//		df2.show();
		/**
		 * 显示 DataFrame中的内容,默认显示前20行。如果现实多行要指定多少行show(行数)
		 * 注意:当有多个列时,显示的列先后顺序是按列的ascii码先后显示。
		 */
		df.show(100);
		/**
		 * DataFrame转换成RDD
		 */
//		JavaRDD<Row> javaRDD = df.javaRDD();
		/**
		 * 树形的形式显示schema信息
		 */
//		df.printSchema();
		
		/**
		 * dataFram自带的API 操作DataFrame
		 */
		//select name from table
//		df.select("name").show();
		//select name ,age+10 as addage from table
//		df.select(df.col("name"),df.col("age").plus(10).alias("addage")).show();
		//select name ,age from table where age>19
//		df.select(df.col("name"),df.col("age")).where(df.col("age").gt(19)).show();
		//select age,count(*) from table group by age
//		df.groupBy(df.col("age")).count().show();
		
		/**
		 * 将DataFrame注册成临时的一张表,这张表相当于临时注册到内存中,是逻辑上的表,不会雾化到磁盘
		 */
//		df.registerTempTable("jtable");
//		DataFrame sql = sqlContext.sql("select age,count(*) as gg from jtable group by age");
//		sql.show();
//		DataFrame sql2 = sqlContext.sql("select name,age from jtable");
//		sql2.show();
		sc.stop();
	}
}


package com.bjsxt.sparksql.dataframe;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
/**
 * 读取json格式的RDD创建DF
 * @author root
 *
 */
public class CreateDFFromJsonRDD {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("jsonRDD");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> nameRDD = sc.parallelize(Arrays.asList(
					"{'name':'zhangsan','age':\"18\"}",
					"{\"name\":\"lisi\",\"age\":\"19\"}",
					"{\"name\":\"wangwu\",\"age\":\"20\"}"
				));
		JavaRDD<String> scoreRDD = sc.parallelize(Arrays.asList(
				"{\"name\":\"zhangsan\",\"score\":\"100\"}",
				"{\"name\":\"lisi\",\"score\":\"200\"}",
				"{\"name\":\"wangwu\",\"score\":\"300\"}"
				));
		
		DataFrame namedf = sqlContext.read().json(nameRDD);
		namedf.show();
		DataFrame scoredf = sqlContext.read().json(scoreRDD);
		scoredf.show();
		
		//SELECT t1.name,t1.age,t2.score from t1, t2 where t1.name = t2.name
		//daframe原生api使用
//		namedf.join(scoredf, namedf.col("name").$eq$eq$eq(scoredf.col("name")))
//		.select(namedf.col("name"),namedf.col("age"),scoredf.col("score")).show();	
		
		//注册成临时表使用
		namedf.registerTempTable("name");
		scoredf.registerTempTable("score");
		/**
		 * 如果自己写的sql查询得到的DataFrame结果中的列会按照 查询的字段顺序返回
		 */
		DataFrame result = 
				sqlContext.sql("select name.name,name.age,score.score "
							+ "from name join score "
							+ "on name.name = score.name");
		result.show();
		sc.stop();
	}
}


package com.bjsxt.sparksql.dataframe;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.DataFrameReader;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;


public class CreateDFFromMysql {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("mysql");
		/**
		 * 	配置join或者聚合操作shuffle数据时分区的数量
		 */
		conf.set("spark.sql.shuffle.partitions", "1"); // 默认200个分区
		
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		/**
		 * 第一种方式读取MySql数据库表,加载为DataFrame
		 */
		Map<String, String> options = new HashMap<String,String>();
		options.put("url", "jdbc:mysql://192.168.112.101:3306/spark");
		options.put("driver", "com.mysql.jdbc.Driver");
		options.put("user", "root");
		options.put("password", "123456");
		options.put("dbtable", "person");
		
		DataFrame person = sqlContext.read().format("jdbc").options(options).load();
		person.show();
		person.registerTempTable("person1");
		options.put("dbtable", "score");
		DataFrame score = sqlContext.read().format("jdbc").options(options).load();
		score.registerTempTable("score1");
		score.show();
		/**
		 * 第二种方式读取MySql数据表加载为DataFrame
		 */
//		DataFrameReader reader = sqlContext.read().format("jdbc");
//		reader.option("url", "jdbc:mysql://192.168.112.101:3306/spark");
//		reader.option("driver", "com.mysql.jdbc.Driver");
//		reader.option("user", "root");
//		reader.option("password", "123456");
//		reader.option("dbtable", "score");
//		DataFrame score = reader.load();
//		score.show();
//		score.registerTempTable("score1");
		
		DataFrame result = 
				sqlContext.sql("select person1.id,person1.name,person1.age,score1.score "
						+ "from person1,score1 "
						+ "where person1.name = score1.name");
		result.show();
		/**
		 * 将DataFrame结果保存到Mysql中
		 */
		Properties properties = new Properties();
		properties.setProperty("user", "root");
		properties.setProperty("password", "123456");
		/**
		 * SaveMode:
		 * Overwrite:覆盖
		 * Append:追加
		 * ErrorIfExists:如果存在就报错
		 * Ignore:如果存在就忽略
		 * 
		 */
		
		result.write().mode(SaveMode.Overwrite).jdbc("jdbc:mysql://192.168.112.101:3306/spark", "result", properties);
		System.out.println("----Finish----");
		sc.stop();
		
		
	}
}


// CreateDFFromParquet 生成Parquet压缩数据,在读取
package com.bjsxt.sparksql.dataframe;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;

public class CreateDFFromParquet {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("parquet");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> jsonRDD = sc.textFile("sparksql/json");
		DataFrame df = sqlContext.read().json(jsonRDD);
//		sqlContext.read().format("json").load("./spark/json");
//		df.show();
		/**
		 * 将DataFrame保存成parquet文件,
		 * SaveMode指定存储文件时的保存模式:
		 * 		Overwrite:覆盖
		 * 		Append:追加
		 * 		ErrorIfExists:如果存在就报错
		 * 		Ignore:如果存在就忽略
		 * 保存成parquet文件有以下两种方式:
		 */
		df.write().mode(SaveMode.Overwrite).format("parquet").save("./sparksql/parquet");
//		df.write().mode(SaveMode.Ignore).parquet("./sparksql/parquet");
		/**
		 * 加载parquet文件成DataFrame	
		 * 加载parquet文件有以下两种方式:	
		 */
		
		DataFrame load = sqlContext.read().format("parquet").load("./sparksql/parquet");
//		load = sqlContext.read().parquet("./sparksql/parquet");
		load.show();
		sc.stop();
	}
	
}


package com.bjsxt.sparksql.dataframe;

import java.io.Serializable;

public class Person implements Serializable{
	/**
	 * 
	 */
	private static final long serialVersionUID = 1L;
	private String id ;
	private String name;
	private Integer age;
	
	public String getId() {
		return id;
	}

	public void setId(String id) {
		this.id = id;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public Integer getAge() {
		return age;
	}

	public void setAge(Integer age) {
		this.age = age;
	}

	@Override
	public String toString() {
		return "Person [id=" + id + ", name=" + name + ", age=" + age + "]";
	}
	
}


package com.bjsxt.sparksql.dataframe;


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
/**
 * 通过反射的方式将非json格式的RDD转换成DataFrame
 * 注意:这种方式不推荐使用
 * @author root
 *
 */
public class CreateDFFromRDDWithReflect {
	public static void main(String[] args) {
		/**
		 * 注意:
		 * 1.自定义类要实现序列化接口
		 * 2.自定义类访问级别必须是Public
		 * 3.RDD转成DataFrame会把自定义类中字段的名称按assci码排序
		 */
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("RDD");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> lineRDD = sc.textFile("sparksql/person.txt");
		
//		final Person p = new Person();  // 需要序列化 implements Serializable
		
		JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Person call(String line) throws Exception {
				final Person p = new Person(); 
				p.setId(line.split(",")[0]);
				p.setName(line.split(",")[1]);
				p.setAge(Integer.valueOf(line.split(",")[2]));
				return p;
			}
		});
		/**
		 * 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame
		 * 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame
		 */
		DataFrame df = sqlContext.createDataFrame(personRDD, Person.class);
		df.show();
		df.printSchema();
		df.registerTempTable("person");
		DataFrame sql = sqlContext.sql("select  name,id,age from person where id = 2");
		sql.show();
		
		/**
		 * 将DataFrame转成JavaRDD
		 * 注意:
		 * 1.可以使用row.getInt(0),row.getString(1)...通过下标获取返回Row类型的数据,但是要注意列顺序问题---不常用
		 * 2.可以使用row.getAs("列名")来获取对应的列值。
		 * 
		 */
		JavaRDD<Row> javaRDD = df.javaRDD();
		JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Person call(Row row) throws Exception {
				Person p = new Person();
//				p.setId(row.getString(0));
//				p.setName(row.getString(1));
//				p.setAge(row.getInt(2));
//				
//				p.setId(row.getString(1));
//				p.setName(row.getString(2));
//				p.setAge(row.getInt(0));
//				
				p.setId(row.getAs("id")+"");
				p.setName((String)row.getAs("name"));
				p.setAge((Integer)row.getAs("age"));
				return p;
			}
		});
		map.foreach(new VoidFunction<Person>() {
			
			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public void call(Person person) throws Exception {
				System.out.println(person);
			}
		});
		
		sc.stop();
	}
}


/**
 * 
 */
package com.bjsxt.sparksql.dataframe;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

/**
 * 动态创建Schema将非json格式RDD转换成DataFrame
 * @author root
 *
 */
public class CreateDFFromRDDWithStruct {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("rddStruct");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> lineRDD = sc.textFile("./sparksql/person.txt");
		/**
		 * 转换成Row类型的RDD
		 */
		JavaRDD<Row> rowRDD = lineRDD.map(new Function<String, Row>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Row call(String s) throws Exception {
				return RowFactory.create(
						s.split(",")[0],
						s.split(",")[1],
						Integer.valueOf(s.split(",")[2]
					));
			}
		});
		/**
		 * 动态构建DataFrame中的元数据,一般来说这里的字段可以来源自字符串,也可以来源于外部数据库
		 */
		List<StructField> asList =Arrays.asList(
					DataTypes.createStructField("id", DataTypes.StringType, true),
					DataTypes.createStructField("name", DataTypes.StringType, true),
					DataTypes.createStructField("age", DataTypes.IntegerType, true)
		);
		
		StructType schema = DataTypes.createStructType(asList);
		
		DataFrame df = sqlContext.createDataFrame(rowRDD, schema);
		
		df.show();
//		JavaRDD<Row> javaRDD = df.javaRDD();
//		javaRDD.foreach(new VoidFunction<Row>() {
//			
//			/**
//			 * 
//			 */
//			private static final long serialVersionUID = 1L;
//
//			@Override
//			public void call(Row row) throws Exception {
//				System.out.println(row.getString(0));
//			}
//		});
		sc.stop();
		
	}
}


package com.bjsxt.sparksql.dataframe;


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

import scala.Function1;
import scala.runtime.BoxedUnit;

public class DataFrameTest {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("RDD");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> lineRDD = sc.textFile("sparksql/person.txt");
		
		JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Person call(String line) throws Exception {
				Person p = new Person();
				p.setId(line.split(",")[0]);
				p.setName(line.split(",")[1]);
				p.setAge(Integer.valueOf(line.split(",")[2]));
				return p;
			}
		});
		/**
		 * 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame
		 * 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame
		 */
		DataFrame df = sqlContext.createDataFrame(personRDD, Person.class);
		df.show();
		df.printSchema();
		df.registerTempTable("person");
		DataFrame resultDataFrame = sqlContext.sql("select  name,age,id from person where id = 2");
		JavaRDD<Row> javaRDD = resultDataFrame.javaRDD();
		/**
		 * 自己写的sql语句查询出来的DataFrame显示表的时候会安装查询的字段来显示,字段不会按照Ascii码来排序
		 */
		javaRDD.foreach(new VoidFunction<Row>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public void call(Row row) throws Exception {
				System.out.println("name = "+ row.getAs(0));
				System.out.println("name = "+ row.getAs("name"));
				System.out.println("name = "+ row.getString(0));
				System.out.println("age = "+ row.getAs(1));
				System.out.println("age = "+ row.getAs("age"));
				System.out.println("age = "+ row.getInt(1));
				System.out.println("id = "+ row.getAs(2));
				System.out.println("id = "+ row.getAs("id"));
				System.out.println("id = "+ row.getString(2));
			}
		});
//		/**
//		 * 将DataFrame转成JavaRDD
//		 * 注意:
//		 * 1.可以使用row.getInt(0),row.getString(1)...通过下标获取返回Row类型的数据,但是要注意列顺序问题---不常用
//		 * 2.可以使用row.getAs("列名")来获取对应的列值。
//		 * 
//		 */
//		JavaRDD<Row> javaRDD = df.javaRDD();
//		JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() {
//
//			/**
//			 * 
//			 */
//			private static final long serialVersionUID = 1L;
//
//			@Override
//			public Person call(Row row) throws Exception {
//				Person p = new Person();
//				
//				
////				p.setId(row.getString(0));
////				p.setName(row.getString(1));
////				p.setAge(row.getInt(2));
//				
////				p.setId(row.getString(1));
////				p.setName(row.getString(2));
////				p.setAge(row.getInt(0));
//				
//				p.setId((String)row.getAs("id"));
//				p.setName((String)row.getAs("name"));
//				p.setAge((Integer)row.getAs("age"));
//				return p;
//			}
//		});
//		map.foreach(new VoidFunction<Person>() {
//			
//			/**
//			 * 
//			 */
//			private static final long serialVersionUID = 1L;
//
//			@Override
//			public void call(Person t) throws Exception {
//				System.out.println(t);
//			}
//		});
		
		sc.stop();
	}
}

  

UDF UDAF  

select name ,sum(xx) from  t group by name ;
与聚合函数sum(xx) 出现的字段name,也必须出现在group by 中。


package com.bjsxt.sparksql.udf_udaf;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
/**
 * UDF 用户自定义函数
 * @author root
 *
 */
public class UDF {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local");
		conf.setAppName("udf");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> parallelize = sc.parallelize(Arrays.asList("zhangsan","lisi","wangwu"));
		JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Row call(String s) throws Exception {
				return RowFactory.create(s);
			}
		});
		
		/**
		 * 动态创建Schema方式加载DF
		 */
		List<StructField> fields = new ArrayList<StructField>();
		fields.add(DataTypes.createStructField("name", DataTypes.StringType,true));
		StructType schema = DataTypes.createStructType(fields);
		
		DataFrame df = sqlContext.createDataFrame(rowRDD,schema);
		
		df.registerTempTable("user");
		
		/**
		 * 根据UDF函数参数的个数来决定是实现哪一个UDF  UDF1,UDF2。。。。UDF1xxx
		 */
		sqlContext.udf().register("StrLen", new UDF1<String,Integer>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Integer call(String t1) throws Exception {
				return t1.length();
			}
		}, DataTypes.IntegerType);
		sqlContext.sql("select name ,StrLen(name) as length from user").show();
		
//		sqlContext.udf().register("StrLen",new UDF2<String, Integer, Integer>() {
//
//			/**
//			 * 
//			 */
//			private static final long serialVersionUID = 1L;
//
//			@Override
//			public Integer call(String t1, Integer t2) throws Exception {
//				return t1.length()+t2;
//			}
//		} ,DataTypes.IntegerType );
//		sqlContext.sql("select name ,StrLen(name,10) as length from user").show();
		
		
		sc.stop();
		
	}
}



package com.bjsxt.sparksql.udf_udaf;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.expressions.MutableAggregationBuffer;
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
/**
 * UDAF 用户自定义聚合函数
 * @author root
 *
 */
public class UDAF {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("udaf");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> parallelize = sc.parallelize(
				Arrays.asList("zhangsan","lisi","wangwu","zhangsan","zhangsan","lisi"));
		JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Row call(String s) throws Exception {
				return RowFactory.create(s);
			}
		});
		
		List<StructField> fields = new ArrayList<StructField>();
		fields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
		StructType schema = DataTypes.createStructType(fields);
		DataFrame df = sqlContext.createDataFrame(rowRDD, schema);
		df.registerTempTable("user");
		/**
		 * 注册一个UDAF函数,实现统计相同值得个数
		 * 注意:这里可以自定义一个类继承UserDefinedAggregateFunction类也是可以的
		 */
		sqlContext.udf().register("StringCount",new UserDefinedAggregateFunction() {
			
			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;
			
			/**
			 * 初始化一个内部的自己定义的值,在Aggregate之前每组数据的初始化结果
			 */
			@Override
			public void initialize(MutableAggregationBuffer buffer) {
				buffer.update(0, 0);
			}
			
			/**
			 * 更新 可以认为一个一个地将组内的字段值传递进来 实现拼接的逻辑
			 * buffer.getInt(0)获取的是上一次聚合后的值
			 * 相当于map端的combiner,combiner就是对每一个map task的处理结果进行一次小聚合 
			 * 大聚和发生在reduce端.
			 * 这里即是:在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算
			 */
			@Override
			public void update(MutableAggregationBuffer buffer, Row arg1) {
				buffer.update(0, buffer.getInt(0)+1);
				
			}
			/**
			 * 合并 update操作,可能是针对一个分组内的部分数据,在某个节点上发生的 但是可能一个分组内的数据,会分布在多个节点上处理
			 * 此时就要用merge操作,将各个节点上分布式拼接好的串,合并起来
			 * buffer1.getInt(0) : 大聚合的时候 上一次聚合后的值       
			 * buffer2.getInt(0) : 这次计算传入进来的update的结果
			 * 这里即是:最后在分布式节点完成后需要进行全局级别的Merge操作
			 */
			@Override
			public void merge(MutableAggregationBuffer buffer1, Row buffer2) {
				buffer1.update(0, buffer1.getInt(0) + buffer2.getInt(0));
			}
			/**
			 * 在进行聚合操作的时候所要处理的数据的结果的类型
			 */
			@Override
			public StructType bufferSchema() {
				return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("bffer", DataTypes.IntegerType, true)));
			}
			/**
			 * 最后返回一个和dataType方法的类型要一致的类型,返回UDAF最后的计算结果
			 */
			@Override
			public Object evaluate(Row row) {
				return row.getInt(0);
			}
			/**
			 * 指定UDAF函数计算后返回的结果类型
			 */
			@Override
			public DataType dataType() {
				return DataTypes.IntegerType;
			}
			/**
			 * 指定输入字段的字段及类型
			 */
			@Override
			public StructType inputSchema() {
				return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("namexxx", DataTypes.StringType, true)));
			}
			/**
			 * 确保一致性 一般用true,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果。
			 */
			@Override
			public boolean deterministic() {
				return true;
			}
			
		});
		
		sqlContext.sql("select name ,StringCount(name) as strCount from user group by name").show();
		
		
		sc.stop();
	}
}

  

 

 

Xshell 配置选中右键粘贴

 

 

 

开窗函数一定在hive中使用

启动 zk hdfs ,yarn, hive spark.

将如下代码打为jar包(不选择main方法,与上边的Test.jar打包刻意区别一下),上传到node1 spark client, 并且上传文件 sales.


package com.bjsxt.sparksql.udf_udaf;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.expressions.MutableAggregationBuffer;
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
/**
 * UDAF 用户自定义聚合函数
 * @author root
 *
 */
public class UDAF {
	public static void main(String[] args) {
		SparkConf conf = new SparkConf();
		conf.setMaster("local").setAppName("udaf");
		JavaSparkContext sc = new JavaSparkContext(conf);
		SQLContext sqlContext = new SQLContext(sc);
		JavaRDD<String> parallelize = sc.parallelize(
				Arrays.asList("zhangsan","lisi","wangwu","zhangsan","zhangsan","lisi"));
		JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Row call(String s) throws Exception {
				return RowFactory.create(s);
			}
		});
		
		List<StructField> fields = new ArrayList<StructField>();
		fields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
		StructType schema = DataTypes.createStructType(fields);
		DataFrame df = sqlContext.createDataFrame(rowRDD, schema);
		df.registerTempTable("user");
		/**
		 * 注册一个UDAF函数,实现统计相同值得个数
		 * 注意:这里可以自定义一个类继承UserDefinedAggregateFunction类也是可以的
		 */
		sqlContext.udf().register("StringCount",new UserDefinedAggregateFunction() {
			
			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;
			
			/**
			 * 初始化一个内部的自己定义的值,在Aggregate之前每组数据的初始化结果
			 */
			@Override
			public void initialize(MutableAggregationBuffer buffer) {
				buffer.update(0, 0);
			}
			
			/**
			 * 更新 可以认为一个一个地将组内的字段值传递进来 实现拼接的逻辑
			 * buffer.getInt(0)获取的是上一次聚合后的值
			 * 相当于map端的combiner,combiner就是对每一个map task的处理结果进行一次小聚合 
			 * 大聚和发生在reduce端.
			 * 这里即是:在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算
			 */
			@Override
			public void update(MutableAggregationBuffer buffer, Row arg1) {
				buffer.update(0, buffer.getInt(0)+1);
				
			}
			/**
			 * 合并 update操作,可能是针对一个分组内的部分数据,在某个节点上发生的 但是可能一个分组内的数据,会分布在多个节点上处理
			 * 此时就要用merge操作,将各个节点上分布式拼接好的串,合并起来
			 * buffer1.getInt(0) : 大聚合的时候 上一次聚合后的值       
			 * buffer2.getInt(0) : 这次计算传入进来的update的结果
			 * 这里即是:最后在分布式节点完成后需要进行全局级别的Merge操作
			 */
			@Override
			public void merge(MutableAggregationBuffer buffer1, Row buffer2) {
				buffer1.update(0, buffer1.getInt(0) + buffer2.getInt(0));
			}
			/**
			 * 在进行聚合操作的时候所要处理的数据的结果的类型
			 */
			@Override
			public StructType bufferSchema() {
				return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("bffer", DataTypes.IntegerType, true)));
			}
			/**
			 * 最后返回一个和dataType方法的类型要一致的类型,返回UDAF最后的计算结果
			 */
			@Override
			public Object evaluate(Row row) {
				return row.getInt(0);
			}
			/**
			 * 指定UDAF函数计算后返回的结果类型
			 */
			@Override
			public DataType dataType() {
				return DataTypes.IntegerType;
			}
			/**
			 * 指定输入字段的字段及类型
			 */
			@Override
			public StructType inputSchema() {
				return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("namexxx", DataTypes.StringType, true)));
			}
			/**
			 * 确保一致性 一般用true,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果。
			 */
			@Override
			public boolean deterministic() {
				return true;
			}
			
		});
		
		sqlContext.sql("select name ,StringCount(name) as strCount from user group by name").show();
		
		
		sc.stop();
	}
}




sales文件
1	A	1
1	A	2
1	B	3
1	A	4
1	C	5
1	B	6
1	C	7
1	A	8
1	D	9
1	F	10
2	B	11
2	D	12
2	A	13
2	E	14
2	F	15
2	F	16
2	A	17
2	G	18
2	B	19
2	C	20
3	B	21
3	F	22
3	A	23


node1 提交
./spark-submit --master spark://node2:7077,node3:7077 --class com.bjsxt.sparksql.windowfun.RowNumberWindowFun  ../lib/Test.jar

## 在node4查看hive 中
hive> use spark;
hive> select * from sales_result;

  

 

 

 

 

 

posted @ 2019-09-26 00:48  星回中道  阅读(371)  评论(0编辑  收藏  举报