搭建自己的OCR服务,第一步:选择合适的开源OCR项目
一、OCR是什么?
光学字符识别(Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。
亦即将图像中的文字进行识别,并以文本的形式返回。
二、OCR的基本流程
1. 图像输入、预处理:
不同的图像格式有不同的存储、压缩方式,目前有OpenCV、CxImage等。
2. 二值化:
如今数码摄像头拍摄的图片大多是彩色图像,彩色图像所含信息量巨大,不适用于OCR技术。为了让计算机更快的、更好地进行OCR相关计算,
我们需要先对彩色图进行处理,使图片只剩下前景信息与背景信息。二值化也可以简单地将其理解为“黑白化”。
3. 图像降噪:
对于不同的图像根据噪点的特征进行去噪的过程称为降噪。
4. 倾斜校正:
由于一般用户,在拍照文档时,难以拍摄得完全符合水平平齐与竖直平齐(我本人就经常拍的歪歪扭扭),
因此拍照出来的图片不可避免的产生倾斜,这就需要图像处理软件进行校正。
5. 版面分析:
将文档图片分段落,分行的过程称为版面分析。
6. 字符切割:
由于拍照、书写条件的限制,经常造成字符粘连、断笔,直接使用此类图像进行OCR分析将会极大限制OCR性能。
因此需要进行字符切割,即:将不同字符之间分割开。
7. 字符识别:
早期以模板匹配为主,后期以结合深度网络的特征提取为主。版面还原:将识别后的文字像原始文档图片那样排列,
段落、位置、顺序不变地输出到Word文档、PDF文档等,这一过程称为版面还原。
8. 后期处理:根据特定的语言上下文的关系,对识别结果进行校正。
9. 输出:将识别出的字符以某一格式的文本输出。
三、OCR的使用现状
ocr的发展已经有了非常多的积累,一般人或者企业使用, 都是直接使用第三方的服务,目前提供第三方服务的大企业也非常多,百度,阿里云,腾讯等等,都提供了非常方便的api接口,可以进行调用,识别的速度、精确度和效果也都是非常不错的。唯一的缺点就是api的调用是需要收费的,对于调用频次不高的个人和企业,这个费用还是非常低的。
1,为什么企业要使用开源的而不是直接使用api服务?
目前因为公司的现状,使用开源的有几个目的
- 每天调用的频次比较高 , 以后可能越来越高, 所以基于费用的考虑是最主要的。
- 目前ocr的算法研究基本趋于成熟,并且目前对识别的精度要求不是太高,目前开源项目基本能够满足。
- 对于cv和深度学习进行一定程度的积累和了解,为后续工作做一些铺垫。
- 学习开源ocr的模型构建,方便后续对于模型的更新。
2,目前常用的几个OCR开源的项目
目前针对ocr的相关开源项目还是很多的,做了一些简单的调研和试用,在这里进行记录。对于调研不准确的希望大家指出。
第一名:PaddleOCR
PaddleOCR 是百度开源的中文识别的ocr开源软件,PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。
支持多种OCR相关前沿算法,在此基础上打造产业级特色模型PP-OCR和PP-Structure,并打通数据生产、模型训练、压缩、预测部署全流程。
开源地址: https://github.com/PaddlePaddle/PaddleOCR.git
官网地址: https://www.paddlepaddle.org.cn/
优势
- github上面star非常多,项目非常活跃
- 模型只针对中文进行训练
- 后面做背书的公司非常强(baidu)
- 相关的中文文档非常齐全
- 识别的精确度比较高
- 安装和教程详细
- 支持前沿算法和标注工具
劣势
- 目前使用的训练模型是基于百度公司自己的PaddlePaddle框架,对于小公司来说并不主流(对比于ts或者pytorch),所使用深度学习框架为后续其他深度学习无法做很好的铺垫
- 项目整体比较复杂,学习成本较高
第二名:Tesseract
Tesseract 一款由HP实验室开发由Google维护的开源OCR引擎,支持多语言,多平台,使用python开发。
开源地址: https://github.com/tesseract-ocr/tesseract.git
优势
- github上面star非常多,项目非常活跃
- 识别的语言和文字非常多
- 后面做背书的公司非常强(google)
劣势
- 不是专门针对中文场景
- 相关文档主要是英文,对于阅读和理解起来有一定困难
- 学习成本比较高
- 源码较多,并且部分源码是c++,学习起来难度比较大
第三名:EasyOCR
EasyOCR是用Python编写基于Tesseract的OCR识别库,用于图像识别输出文本,目前支持80多种语言。
开源地址: https://github.com/JaidedAI/EasyOCR.git
优势
- github上面的star也是比较多,但是最近不是特别活跃
- 支持的语言也是非常多的,多达80多种
- 识别的精确度尚可
劣势
- 从官方的页面体验来说识别的速度较慢
- 识别的文字种类多,学习难度较高
- 相关的官方文档是基于英文的,学习难度较高,对于新手不太友好
所以根据自己实际情况放弃了这个项目的学习。