NumPy学习11

今天学习了NumPy线性代数

21, NumPy线性代数
numpy_test11.py :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
 
'''
21, NumPy线性代数
NumPy 提供了 numpy.linalg 模块,该模块中包含了一些常用的线性代数计算方法,
下面对常用函数做简单介绍:
 
NumPy线性代数函数
函数名称        描述说明
dot         两个数组的点积。
vdot        两个向量的点积。
inner       两个数组的内积。
matmul      两个数组的矩阵积。
det         计算输入矩阵的行列式。
solve       求解线性矩阵方程。
inv         计算矩阵的逆矩阵,逆矩阵与原始矩阵相乘,会得到单位矩阵。
'''
print("----21, NumPy线性代数----")
'''
(1) numpy.dot()
按照矩阵的乘法规则,计算两个矩阵的点积运算结果。
当输入一维数组时返回一个结果值,若输入的多维数组则同样返回一个多维数组结果。
'''
print("----(1) numpy.dot()----")
# 输入一维数组
arr_A = [1, 2, 3]
arr_B = [4, 5, 6]
print('np.dot(arr_A, arr_B) : ', np.dot(arr_A, arr_B))
'''
np.dot(arr_A, arr_B) :  32
'''
# 输入二维数组时
arr_a = np.array([[50, 100], [24, 12]])
print('arr_a : ', arr_a)
arr_b = np.array([[10, 20], [16, 28]])
print('arr_b : ', arr_b)
arr_dot = np.dot(arr_a, arr_b)
print('arr_dot : ', arr_dot)
'''
arr_a :  [[ 50 100]
          [ 24  12]]
arr_b :  [[10 20]
          [16 28]]
arr_dot :  [ [2100 3800]
             [ 432  816]]
'''
 
'''
(2) numpy.vdot()
该函数用于计算两个向量的点积结果,与 dot() 函数不同。
'''
print("----(1) numpy.dot()----")
# 输入一维数组
arr_a = np.array([[50, 100], [24, 12]])
print('arr_a : ', arr_a)
arr_b = np.array([[10, 20], [16, 28]])
print('arr_b : ', arr_b)
arr_vdot = np.vdot(arr_a, arr_b)
print('arr_vdot : ', arr_vdot)
'''
arr_a :  [[ 50 100]
          [ 24  12]]
arr_b :  [[10 20]
          [16 28]]
arr_vdot :  3220
'''
 
'''
(3) numpy.inner()
inner() 方法用于计算数组之间的内积。当计算的数组是一维数组时,它与 dot() 函数相同,
若输入的是多维数组则两者存在不同.
'''
print("----(3) numpy.inner()----")
arr_a = [[1, 10], [100, 1000]]
print('arr_a : ', arr_a)
arr_b = [[1, 2], [3, 4]]
print('arr_b : ', arr_b)
# inner函数
print('np.inner(arr_a, arr_b) : ', np.inner(arr_a, arr_b))
# dot函数
print('np.dot(arr_a, arr_b) : ', np.dot(arr_a, arr_b))
'''
arr_a :  [[1, 10], [100, 1000]]
arr_b :  [[1, 2], [3, 4]]
inner() 函数的计算过程是 A 数组的每一行与 B 数组的每一行相乘再相加
np.inner(arr_a, arr_b) :  [[  21   43]
                           [2100 4300]]
dot() 则表示是 A 数组每一行与 B 数组的每一列相乘。
np.dot(arr_a, arr_b) :  [[  31   42]
                         [3100 4200]]
'''
 
'''
(4) numpy.matmul()
该函数返回两个矩阵的乘积,假如两个矩阵的维度不一致,就会产生错误。
'''
print("----(4) numpy.matmul()----")
arr_a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print('arr_a : ', arr_a)
arr_b = np.array([[23, 23, 12], [2, 1, 2], [7, 8, 9]])
print('arr_b : ', arr_b)
arr_mul = np.matmul(arr_a, arr_b)
print('arr_mul : ', arr_mul)
'''
arr_a : [[1 2 3]
         [4 5 6]
         [7 8 9]]
arr_b : [[23 23 12]
         [ 2  1  2]
         [ 7  8  9]]
arr_mul :  [ [ 48  49  43]
             [144 145 112]
             [240 241 181]]
'''
 
'''
(5) numpy.linalg.det()
该函数使用对角线元素来计算矩阵的行列式,计算 2*2(两行两列) 的行列式。
通过对角线元素求行列式的结果(口诀:“一撇一捺”计算法):
1*4-2*3 = -2
'''
print("----(5) numpy.linalg.det()----")
arr_a = np.array([[1, 2], [3, 4]])
print('arr_a : ', arr_a)
print('np.linalg.det(arr_a) : ', np.linalg.det(arr_a))
'''
arr_a : [[1 2]
         [3 4]]
np.linalg.det(arr_a) :  -2.0000000000000004
'''
 
'''
(6) numpy.linalg.solve()
该函数用于求解线性矩阵方程组,并以矩阵的形式表示线性方程的解,如下所示:
3X  +  2 Y + Z =  10 
X + Y + Z = 6
X + 2Y - Z = 2
首先将上述方程式转换为矩阵的表达形式:
方程系数矩阵:
3   2   1
1   1   1
1   2  -1
方程变量矩阵:
X
Y
方程结果矩阵:
10
6
2
如果用  m 、x、n 分别代表上述三个矩阵,其表示结果如下:
m*x=n 或 x=n/m
将系数矩阵与结果矩阵传递给 numpy.solve() 函数,即可求出线程方程的解,如下所示:
'''
print("----(6) numpy.linalg.solve()----")
arr_m = np.array([[3, 2, 1], [1, 1, 1], [1, 2, -1]])
print('数组 arr_m : ', arr_m)
arr_n = np.array([[10], [6], [2]])
print ('矩阵 arr_n:', arr_n)
print ('计算:arr_m^(-1)arr_n:')
arr_x = np.linalg.solve(arr_m, arr_n)
print('解 arr_x : ', arr_x)
'''
数组 arr_m :[[ 3  2  1]
             [ 1  1  1]
             [ 1  2 -1]]
矩阵 arr_n: [[10]
             [ 6]
             [ 2]]
计算:arr_m^(-1)arr_n:
解 arr_x :  [[1.]
             [2.]
             [3.]]
'''
 
'''
(7) numpy.linalg.inv()
该函数用于计算矩阵的逆矩阵,逆矩阵与原矩阵相乘得到单位矩阵。
'''
print("----((7) numpy.linalg.inv()----")
arr_a = np.array([[1,2],[3,4]])
print('原数组 arr_a : ', arr_a)
arr_b = np.linalg.inv(arr_a)
print("求逆   arr_b :", arr_b)
'''
原数组 arr_a :  [[1 2]
                 [3 4]]
求逆   arr_b : [[-2.   1. ]
                 [ 1.5 -0.5]]
'''

  

posted @   PandaCode辉  阅读(22)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~
点击右上角即可分享
微信分享提示