某个子串的循环节
题意:
给出一个长度为n(<=5e4)的字符串,有m(<=2e6)个询问,询问这个字符串[L,R]区间的最小循环节长度。
题解:
首先需要明确两个东西:
1.假如询问的区间长度为len,那么循环节的长度必定为len的因数,那么只需要枚举len的因数就好了,复杂度为根号n
2.现在只需要检查枚举的循环节的长度是否符合条件,如果字符串出现循环节,假设循环节长度为x,那么[L, R - x] == [L+x, R]
3.现在的问题就是怎么判断[L, R - x] == [L+x, R],hash一下就好了O(∩_∩)O~~
总结:
1.hash要搞对姿势,unsigned自动溢出
2.如果字符串出现循环节,假设循环节长度为x,那么[L, R - x] == [L+x, R]
代码:
#include <cstdio> #include <vector> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int N = 5e5+7; char ch[N]; vector <int> fac[N]; unsigned int pow[N],H[N],L,R,len,n,q; int readint(){ int K = 0; char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') K = K * 10 + c - '0', c = getchar(); return K; } int hash(int L,int R){ return H[R] - H[L - 1] * pow[R - L + 1]; } int check(int len){ return (hash(L + len, R) == hash(L, R - len)); } int main(){ scanf("%d%s%d", &n, ch + 1, &q); pow[0] = 1; for (int i = 1; i <= n; ++i) { H[i] = H[i-1] * 159 + ch[i] - 'a'; pow[i] = pow[i-1] * 159; for (int j = i; j <= n; j += i) fac[j].push_back(i); } while (q--) { L = readint(), R = readint(), len = R - L + 1; for (int i = 0; i < fac[len].size(); ++i){ if (check(fac[len][i])) { printf("%d\n", fac[len][i]); break; } } } return 0; }