[Linux]pthread学习笔记
<UNIX环境高级编程(第二版)> 线程学习P287-P297
#include <pthread.h> //新建线程 int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg); //线程终止 void pthread_exit(void *rval_ptr);//线程自身主动退出 int pthread_join(pthread_t tid, void **rval_ptr);//其他线程阻塞自身,等待tid退出 //线程清理 void pthread_cleanup_push(void (*rtn)(void *), void *arg); void pthread_cleanup_pop(int execute);
补充说明:
1. 线程创建
pthread_create()函数返回值0,表示创建成功,线程id保存载tidp中;失败则返回非零,需自行处理,不会修改errno值
2. 线程终止
a. 任一线程调用exit, _Exit, _exit都将导致整个进程终止;
b. 单个线程退出方式有三种:
1> 线程执行函数start_rtn()中使用return返回,返回值为线程退出码;
2> 被同一个进程的其他线程使用pthread_cancel()取消;
3> 线程自身调用了pthread_exit();
说明:pthread_join(pthread_t tid, void **rval_ptr)函数会阻塞调用线程,直到tid线程通过上述三种方式终止退出,且return/pthread_exit()方式会设置相应线程退出码rval_ptr,而pthread_cancel()取消的线程,将退出码设置为PTHREAD_CANCELED.
3. 线程清理处理程序(thread cleanup handler)
3.a> pthread_cleanup_push()与pthread_cleanup_pop()均为<pthread.h>中实现的宏定义,具体实现如下:
pthread_cleanup_push and pthread_cleanup_pop are macros and must always be used in matching pairs at the same nesting level of braces. */ # define pthread_cleanup_push(routine, arg) \ do { \ __pthread_cleanup_class __clframe (routine, arg) /* Remove a cleanup handler installed by the matching pthread_cleanup_push. If EXECUTE is non-zero, the handler function is called. */ # define pthread_cleanup_pop(execute) \ __clframe.__setdoit (execute); \ } while (0)
可见push/pop中的{/}是一一对应的,因此pthread_cleanup_push/pop()也应一一对应出现,否则编译出错。
3.b> 当线程执行下列之一操作时调用清理函数,thread_cleanup_push由栈结构实现,注意清理程序调用的顺序,先入后出。
1: 调用pthread_exit()时,而直接return不会出发清理函数;
2: 相应取消请求pthread_cancel()时;
3: 使用非零execute参数调用pthread_cleanup_pop()时;
尤其需注意pthread_cleanup_pop()参数不同及此语句所处位置不同而有不同效果。
看此代码实例,注意return或pthread_exit()位置不同导致pthread_cleanup_pop()不同参数的效果变化。
#include <pthread.h> void testPointerSize() { void *tret; printf("size of pointer in x86-64:%d\n",sizeof(tret)); //result is 8 in x86-64. //which is 4 in x86-32. printf("size of int in x86-64:%d\n",sizeof(int)); //result is 4 in x86-64. //which is also 4 in x86-32. } void cleanup(void *arg) { printf("cleanup:%s\n",(char *)arg); } void * thr_fn1(void *arg) { printf("thread 1 start\n"); pthread_cleanup_push(cleanup, "thread 1 first handler"); pthread_cleanup_push(cleanup, "thread 1 second handler"); if(arg) return ((void *)1);//arg !=0 ,return here. // return here will not triger any cleanup. pthread_cleanup_pop(0); pthread_cleanup_pop(1); return ((void *)2);//will not run this } void * thr_fn2(void *arg) { printf("thread 2 start\n"); pthread_cleanup_push(cleanup, "thread 2 first handler"); pthread_cleanup_push(cleanup, "thread 2 second handler"); pthread_cleanup_pop(0); pthread_cleanup_pop(1); return ((void *)2); // return here can triger cleanup second handler; } void * thr_fn3(void *arg) { printf("thread 3 start\n"); pthread_cleanup_push(cleanup, "thread 3 first handler"); pthread_cleanup_push(cleanup, "thread 3 second handler"); if(arg) pthread_exit((void *)3); //pthread_exit() here will triger both cleanup first&second handler. pthread_cleanup_pop(1); pthread_cleanup_pop(0); pthread_exit((void *)3);//wont run this } void * thr_fn4(void *arg) { printf("thread 4 start\n"); pthread_cleanup_push(cleanup, "thread 4 first handler"); pthread_cleanup_push(cleanup, "thread 4 second handler"); pthread_cleanup_pop(1); pthread_cleanup_pop(0); pthread_exit((void *)4); //pthread_exit() here will triger cleanup second handler. } int main(void) { testPointerSize(); int err; pthread_t tid1, tid2, tid3, tid4; void *tret; err = pthread_create(&tid1, NULL, thr_fn1, (void *)1); err = pthread_join(tid1,&tret); printf("thread 1 exit code %d\n",(int)tret); err = pthread_create(&tid2, NULL, thr_fn2, (void *)2); err = pthread_join(tid2, &tret); printf("thread 2 exit code %d\n",(int)tret); err = pthread_create(&tid3, NULL, thr_fn3, (void *)3); err = pthread_join(tid3,&tret); printf("thread 3 exit code %d\n",(int)tret); err = pthread_create(&tid4, NULL, thr_fn4, (void *)4); err = pthread_join(tid4, &tret); printf("thread 4 exit code %d\n",(int)tret); }
运行结果:
[root@hello testData]# ./test size of pointer in x86-64:8 size of int in x86-64:4 thread 1 start thread 1 exit code 1 thread 2 start cleanup:thread 2 first handler thread 2 exit code 2 thread 3 start cleanup:thread 3 second handler cleanup:thread 3 first handler thread 3 exit code 3 thread 4 start cleanup:thread 4 second handler thread 4 exit code 4
由上述测试程序总结如下:
1> push与pop间的return,将导致清理程序不被触发;
2> 位于pop之后return,由pop的参数确定是否触发清理程序,非零参数触发,零参数不触发;
3> push/pop间的pthread_exit(),将触发所有清理函数;
4>位于pop之后的pthread_exit()时,pop参数决定是否触发清理程序;
其实,上述四种情况只是测试验证了前文3.b所说三个条件,加深理解。
参考文献:
2. <UNIX环境高级编程(第2版)> P295-296程序
3. pthread_cleanup_push()/pthread_cleanup_pop()的详解
4. Linux中vim的列编辑实例 (Mark记录)