leetcode -day 15 Distinct Subsequences

1、


Distinct Subsequences 

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

分析:此题乍一看看不明确啥意思,后面慢慢理解,就是说T是S的子串。这里的子串是说原字符串删除某些字符后剩余字符的组合,题目是S中通过删除操作获得子串T的数目。

如样例中的第一个为删掉第一个b,第二个为删除第二个b,第三个为删除第三个b,因此数量为3.

首先想到的方法是回溯法,可是遇到长串时超时。里面包括太多反复子问题。

代码例如以下:Time Limit Exceeded

class Solution {
public:
    int numDistinct(string S, string T) {
        num = 0;
        if(S.length() < T.length()){
            return num;
        }
        numDistinctCore(S,T,0,0);
        return num;
    }
    void numDistinctCore(string& S,string& T, int si, int tj){
        int slen = S.length();
        int tlen = T.length();
        if(slen-si < tlen -tj){
            return;
        }
        if(tj == tlen){
            ++num;
        }
        for(int i = si; i<slen; ++i){
            if(S[i] == T[tj]){
                numDistinctCore(S,T,i+1, tj+1);
            }
        }
    }
    int num;
};

考虑到回溯法子问题反复求解。想到利用动态规划的方法,此题有些像求最大公共字串,可是须要改动一下,寻找子问题。设dp[i][j]为S字符串截止到i时。能将S前面字符串能转换为T截止到j的子串的转换次数。求dp[i][j]时,一种方法转换时即删除S[i]。变回S[i-1][j]的问题;还有一种方法,假设S[i] == T[j],则转换为dp[i-1][j-1]的问题。即为同样时为 dp[i][j] = dp[i-1][j] + dp[i-1][j-1] ,不同一时候为 dp[i][j] = dp[i-1][j] 

Accepted

class Solution {
public:
    int numDistinct(string S, string T) {
        int slen = S.length();
        int tlen = T.length();
        if(slen < tlen){
            return 0;
        }
        int **dp = new int*[slen+1];
        for(int i=0; i<slen+1; ++i){
            dp[i] = new int[tlen+1];
            dp[i][0] = 1;
        }
        for(int j=1; j<tlen+1; ++j){
            dp[0][j] = 0;
        }
        for(int i=1; i<slen+1; ++i){
            for(int j=1; j<tlen+1; ++j){
                int temp = dp[i-1][j];
                if(S[i-1] == T[j-1]){
                    temp += dp[i-1][j-1];
                }
                dp[i][j] = temp;
            }
        }
        int result = dp[slen][tlen];
        for(int i=0; i<slen+1; ++i){
            delete[] dp[i];
        }
        delete[] dp;
        return result;
    }
   
};

posted on 2019-05-11 08:39  xfgnongmin  阅读(111)  评论(0编辑  收藏  举报

导航