对并发熟悉吗?说一下synchronized与Lock的区别与使用

知识回顾

线程与进程

一个程序最少需要一个进程,而一个进程最少需要一个线程。关系是线程–>进程–>程序的大致组成结构。所以线程是程序执行流的最小单位,而进程是系统进行资源分配和调度的一个独立单位。

线程类Thread的几个重要方法

  • start()方法,调用该方法开始执行该线程;
  • join方法,调用该方法等待该线程结束。
  • sleep()方法,调用该方法该线程进入等待。
  • run()方法,调用该方法直接执行线程的run()方法,但是线程调用start()方法时也会运行run()方法,区别就是一个是由线程调度运行run()方法,一个是直接调用了线程中的run()方法!

看到这里,可能有些人就会问啦,那wait()和notify()呢?要注意,其实wait()与notify()方法是Object的方法,不是Thread的方法!!同时,wait()与notify()会配合使用,分别表示线程挂起和线程恢复。

这里还有一个很常见的问题,顺带提一下:wait()与sleep()的区别,简单来说wait()会释放对象锁而sleep()不会释放对象锁。

线程状态

线程总共有5大状态

  • 新建状态:新建线程对象,并没有调用start()方法之前
  • 就绪状态:调用start()方法之后线程就进入就绪状态,但是并不是说只要调用start()方法线程就马上变为当前线程,在变为当前线程之前都是为就绪状态。值得一提的是,线程在睡眠和挂起中恢复的时候也会进入就绪状态哦。
  • 运行状态:线程被设置为当前线程,开始执行run()方法。就是线程进入运行状态
  • 阻塞状态:线程被暂停,比如说调用sleep()方法后线程就进入阻塞状态
  • 死亡状态:线程执行结束

锁类型

  • 可重入锁:在执行对象中所有同步方法不用再次获得锁
  • 可中断锁:在等待获取锁过程中可中断
  • 公平锁:按等待获取锁的线程的等待时间进行获取,等待时间长的具有优先获取锁权利
  • 读写锁:对资源读取和写入的时候拆分为2部分处理,读的时候可以多线程一起读,写的时候必须同步地写

synchronized与Lock的区别

我把两者的区别分类到了一个表中,方便大家对比:

Lock详细介绍与Demo

Lock接口中我们可以看到主要有个方法,这些方法的功能从注释中可以看出:

  • lock():获取锁,如果锁被占用则一直等待
  • unlock():释放锁
  • tryLock():注意返回类型是boolean,如果获取锁的时候锁被占用就返回false,否则返回true
  • tryLock(long time, TimeUnit unit):比起tryLock()就是给了一个时间期限,保证等待参数时间
  • lockInterruptibly():用该锁的获得方式,如果线程在获取锁的阶段进入了等待,那么可以中断此线程,先去做别的事

下面是Lock一般使用的例子,注意ReentrantLock是Lock接口的实现。

lock()

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LockTest {
    private Lock lock = new ReentrantLock();

    //需要参与同步的方法
    private void method(Thread thread){
        lock.lock();
        try {
            System.out.println("线程名"+thread.getName() + "获得了锁");
        }catch(Exception e){
            e.printStackTrace();
        } finally {
            System.out.println("线程名"+thread.getName() + "释放了锁");
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        LockTest lockTest = new LockTest();

        //线程1
        Thread t1 = new Thread(new Runnable() {

            @Override
            public void run() {
                lockTest.method(Thread.currentThread());
            }
        }, "t1");

        Thread t2 = new Thread(new Runnable() {

            @Override
            public void run() {
                lockTest.method(Thread.currentThread());
            }
        }, "t2");

        t1.start();
        t2.start();
    }
}
//执行情况:线程名t1获得了锁
//         线程名t1释放了锁
//         线程名t2获得了锁
//         线程名t2释放了锁

tryLock()

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LockTest {
    private Lock lock = new ReentrantLock();

    //需要参与同步的方法
    private void method(Thread thread){
/*        lock.lock();
        try {
            System.out.println("线程名"+thread.getName() + "获得了锁");
        }catch(Exception e){
            e.printStackTrace();
        } finally {
            System.out.println("线程名"+thread.getName() + "释放了锁");
            lock.unlock();
        }*/


        if(lock.tryLock()){
            try {
                System.out.println("线程名"+thread.getName() + "获得了锁");
            }catch(Exception e){
                e.printStackTrace();
            } finally {
                System.out.println("线程名"+thread.getName() + "释放了锁");
                lock.unlock();
            }
        }else{
            System.out.println("我是"+Thread.currentThread().getName()+"有人占着锁,我就不要啦");
        }
    }

    public static void main(String[] args) {
        LockTest lockTest = new LockTest();

        //线程1
        Thread t1 = new Thread(new Runnable() {

            @Override
            public void run() {
                lockTest.method(Thread.currentThread());
            }
        }, "t1");

        Thread t2 = new Thread(new Runnable() {

            @Override
            public void run() {
                lockTest.method(Thread.currentThread());
            }
        }, "t2");

        t1.start();
        t2.start();
    }
}

//执行结果: 线程名t2获得了锁
//         我是t1有人占着锁,我就不要啦
//         线程名t2释放了锁

两种锁的底层实现方式

synchronized

synchronized修饰的代码块是用字节码指令来控制程序(这里不包括热点代码编译成机器码)。两个指令是monitorentermonitorexit。当一条线程执行时遇到monitorenter指令的时候,它会去尝试获得锁,如果获得锁那么锁计数+1(为什么会加一呢,因为它是一个可重入锁,所以需要用这个锁计数判断锁的情况),如果没有获得锁,那么阻塞。当它遇到monitorexit的时候,锁计数器-1,当计数器为0,那么就释放锁。

使用synchronized关键词修饰的方法,并没有通过指令monitorenter和monitorexit来完成,而通过方法中的ACC_SYNCHRONIZED标示符来实现的。

两者本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。

Lock

Lock实现和synchronized不一样,后者是一种悲观锁,底层主要靠volatile和CAS操作实现的

我要说的是:尽可能去使用synchronized而不要去使用LOCK。

jdk1.6以后对synchronized锁做了哪些优化

为了提升性能,在JDK 1.6引入偏向锁、轻量级锁、重量级锁,用来减少锁竞争带来的上下文切换。

主要是借助JDK 1.6新增的Java对象头,实现了锁升级功能。

  • 在JDK 1.6的JVM中,对象实例在堆内存中被分为三部分:对象头、实例数据、对齐填充
  • 对象头的组成部分:对象标记(Mark Word)、指向类的指针、数组长度(可选,数组类型时才有)
  • Mark Word记录了对象和锁有关的信息,在64位的JVM中,Mark Word为64 bit
  • 锁升级功能主要依赖于Mark Word中锁标志位和是否偏向锁标志位
  • synchronized同步锁的升级优化路径:偏向锁 -> 轻量级锁 -> 重量级锁

线程自旋和适应性自旋

java线程其实是映射在内核之上的,线程的挂起和恢复会极大的影响开销。很多线程在等待锁的时候,大多数情况下很短的一段时间就获得了锁,所以它们在线程等待的时候,并不需要把线程挂起,而是让他无目的的循环,一般设置10次。这样就避免了线程切换的开销,极大的提升了性能。

而适应性自旋,是赋予了自旋一种学习能力,它并不固定自旋10次。它可以根据它前面线程的自旋情况,从而调整它的自旋,甚至是不经过自旋而直接挂起。

锁消除

什么叫锁消除呢?就是把不必要的同步在编译阶段进行移除。

那么有的小伙伴又迷糊了,我自己写的代码我会不知道这里要不要加锁?我加了锁就是表示这边会有同步呀?

并不是这样,这里所说的锁消除并不一定指代是你写的代码的锁消除,我打一个比方:

在jdk1.5以前,我们的String字符串拼接操作其实底层是StringBuffer来实现的,而在jdk1.5之后,那么是用StringBuilder来拼接的。我们考虑前面的情况,比如如下代码:

String str1="qwe";
String str2="asd";
String str3=str1+str2;

底层实现会变成这样:

StringBuffer sb = new StringBuffer();
sb.append("qwe");
sb.append("asd");

我们知道,StringBuffer是一个线程安全的类,也就是说两个append方法都会同步,通过指针逃逸分析(就是变量不会外泄),我们发现在这段代码并不存在线程安全问题,这个时候就会把这个同步锁消除。

锁粗化

在用synchronized的时候,我们都讲究为了避免大开销,尽量同步代码块要小。那么为什么还要加粗呢?

我们继续以上面的字符串拼接为例,我们知道在这一段代码中,每一个append都需要同步一次,那么我可以把锁粗化到第一个append和最后一个append,即将连续的加锁精简到只加一次锁。

轻量级锁

无竞争条件下,通过CAS消除同步互斥。

偏向锁

无竞争条件下,消除整个同步互斥,连CAS都不操作。

 

参考:

 

posted @ 2021-12-04 15:01  残城碎梦  阅读(39)  评论(0编辑  收藏  举报