Redis中是如何实现分布式锁的?
分布式锁常见的三种实现方式:
- 数据库乐观锁;
- 基于Redis的分布式锁;
- 基于ZooKeeper的分布式锁。
Redis要实现分布式锁,以下条件应该得到满足:
- 互斥性:在任意时刻,只有一个客户端能持有锁。
- 不能死锁:客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
- 容错性:只要大部分的Redis节点正常运行,客户端就可以加锁和解锁。
实现
可以直接通过set key value px milliseconds nx命令实现加锁, 通过Lua脚本实现解锁。
- SET k1 v1 NX PX 30000:key不存在时生效,设置过期时间为30000毫秒。
- SET k1 v1 NX EX 30:key不存在时生效,设置过期时间为30秒。
- SET k1 v1 XX EX 300:key存在时生效,设置过期时间为300秒
从 Redis 2.6.12 版本开始, SET 命令的行为可以通过一系列参数(SET key value [EX seconds] [PX milliseconds] [NX|XX] )来修改:
- EX second :设置键的过期时间为 second 秒。 SET key value EX second 效果等同于 SETEX key second value 。
- PX millisecond :设置键的过期时间为 millisecond 毫秒。 SET key value PX millisecond 效果等同于 PSETEX key millisecond value 。
- NX :只在键不存在时,才对键进行设置操作。 SET key value NX 效果等同于 SETNX key value 。
- XX :只在键已经存在时,才对键进行设置操作。
因为 SET 命令可以通过参数来实现和 SETNX 、 SETEX 和 PSETEX 三个命令的效果,所以将来的 Redis 版本可能会废弃并最终移除 SETNX 、 SETEX 和 PSETEX 这三个命令。
//获取锁(unique_value可以是UUID等)
SET resource_name unique_value NX PX 30000
//释放锁(lua脚本中,一定要比较value,防止误解锁)
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
代码解释:
- set 命令要用 set key value px milliseconds nx,替代 setnx + expire 需要分两次执行命令的方式,保证了原子性;
- value 要具有唯一性,可以使用UUID.randomUUID().toString()方法生成,用来标识这把锁是属于哪个请求加的,在解锁的时候就可以有依据;
- 释放锁时要验证 value 值,防止误解锁;
- 通过 Lua 脚本来避免 Check And Set 模型的并发问题,因为在释放锁的时候因为涉及到多个Redis操作 (利用了eval命令执行Lua脚本的原子性);
加锁代码分析
首先,set()加入了NX参数,可以保证如果已有key存在,则函数不会调用成功,也就是只有一个客户端能持有锁,满足互斥性。其次,由于我们对锁设置了过期时间,即使锁的持有者后续发生崩溃而没有解锁,锁也会因为到了过期时间而自动解锁(即key被删除),不会发生死锁。最后,因为我们将value赋值为requestId,用来标识这把锁是属于哪个请求加的,那么在客户端在解锁的时候就可以进行校验是否是同一个客户端。
解锁代码分析
将Lua代码传到jedis.eval()方法里,并使参数KEYS[1]赋值为lockKey,ARGV[1]赋值为requestId。在执行的时候,首先会获取锁对应的value值,检查是否与requestId相等,如果相等则解锁(删除key)。
存在的风险
如果存储锁对应key的那个节点挂了的话,就可能存在丢失锁的风险,导致出现多个客户端持有锁的情况,这样就不能实现资源的独享了。
- 客户端A从master获取到锁
- 在master将锁同步到slave之前,master宕掉了(Redis的主从同步通常是异步的)。主从切换,slave节点被晋级为master节点。
- 客户端B取得了同一个资源被客户端A已经获取到的另外一个锁。导致存在同一时刻存在不止一个线程获取到锁的情况。
Redisson实现
Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还实现了可重入锁(Reentrant Lock)、公平锁(Fair Lock、联锁(MultiLock)、 红锁(RedLock)、 读写锁(ReadWriteLock)等,还提供了许多分布式服务。
Redisson的宗旨是促进使用者对Redis的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上。
Redisson 支持单点模式、主从模式、哨兵模式、集群模式,这里以单点模式为例介绍重入锁的用法。
// 1.构造redisson实现分布式锁必要的Config
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:5379").setPassword("123456").setDatabase(0);
// 2.构造RedissonClient
RedissonClient redissonClient = Redisson.create(config);
// 3.获取锁对象实例(无法保证是按线程的顺序获取到)
RLock rLock = redissonClient.getLock(lockKey);
try {
/**
* 4.尝试获取锁
* waitTimeout 尝试获取锁的最大等待时间,超过这个值,则认为获取锁失败
* leaseTime 锁的持有时间,超过这个时间锁会自动失效(值应设置为大于业务处理的时间,确保在锁有效期内业务能处理完)
*/
boolean res = rLock.tryLock((long)waitTimeout, (long)leaseTime, TimeUnit.SECONDS);
if (res) {
//成功获得锁,在这里处理业务
}
} catch (Exception e) {
throw new RuntimeException("aquire lock fail");
}finally{
//无论如何, 最后都要解锁
rLock.unlock();
}
加锁流程图:
解锁流程图:
我们可以看到,RedissonLock是可重入的,并且考虑了失败重试,可以设置锁的最大等待时间, 在实现上也做了一些优化,减少了无效的锁申请,提升了资源的利用率。
需要特别注意的是,RedissonLock 同样没有解决节点挂掉的时候,存在丢失锁的风险的问题。而现实情况是有一些场景无法容忍的,所以 Redisson 提供了实现了redlock算法的 RedissonRedLock,RedissonRedLock 真正解决了单点失败的问题,代价是需要额外的为 RedissonRedLock 搭建Redis环境。
所以,如果业务场景可以容忍这种小概率的错误,则推荐使用 RedissonLock, 如果无法容忍,则推荐使用 RedissonRedLock。
参考: |