leveldb分析——Arena内存管理
leveldb中实现了一个简单的内存管理工具Arena,其基本思想为:先预先向系统申请一块内存,此后需要申请内存时,直接到预先分配的内存中申请。
那么这样做的目的是什么呢?
(1)避免了频率地进行malloc/new和free/delete操作,同时对于内存管理变得简单,对于内存的释放工作交给Arena。
(2)避免造成大量的内存碎片。(还需去了解一下)
下面看具体的源码分析:
Arena定义:
class Arena { public: Arena(); ~Arena(); // Return a pointer to a newly allocated memory block of "bytes" bytes. char* Allocate(size_t bytes); // Allocate memory with the normal alignment guarantees provided by malloc char* AllocateAligned(size_t bytes); // Returns an estimate of the total memory usage of data allocated // by the arena (including space allocated but not yet used for user // allocations). size_t MemoryUsage() const { return blocks_memory_ + blocks_.capacity() * sizeof(char*); } private: char* AllocateFallback(size_t bytes); char* AllocateNewBlock(size_t block_bytes); // Allocation state char* alloc_ptr_; size_t alloc_bytes_remaining_; // Array of new[] allocated memory blocks std::vector<char*> blocks_; // Bytes of memory in blocks allocated so far size_t blocks_memory_; // No copying allowed Arena(const Arena&); void operator=(const Arena&); };
Arena提供两种分配方式:所分配的内存严格对齐、不一定严格对齐的分配方式。每次预先分配的4K(为什么是4K?)保存到blocks_ vector中,最后统一释放。这种内存管理方式是具有一定的适用范围,如需不断分配小内存,最终一并全释放的场景。对于leveldb来说,memtable恰好就是这样的,每次向memtable中insert一条k/v时,就申请一块内存,当memtable被flush到磁盘且不再使用时,将整个memtable释放掉。
inline char* Arena::Allocate(size_t bytes) { // The semantics of what to return are a bit messy if we allow // 0-byte allocations, so we disallow them here (we don't need // them for our internal use). assert(bytes > 0); if (bytes <= alloc_bytes_remaining_) { char* result = alloc_ptr_; alloc_ptr_ += bytes; alloc_bytes_remaining_ -= bytes; return result; } return AllocateFallback(bytes); //预先分配的不足
}
char* Arena::AllocateFallback(size_t bytes) { if (bytes > kBlockSize / 4) { // Object is more than a quarter of our block size. Allocate it separately // to avoid wasting too much space in leftover bytes. char* result = AllocateNewBlock(bytes); ///对于大内存,直接单独给分配一块,原先预分配的内存还能使用 return result; } // We waste the remaining space in the current block. 预分配的内存剩下的已很少,所以直接重新分配一块,也就是说浪费了一点内存 alloc_ptr_ = AllocateNewBlock(kBlockSize); alloc_bytes_remaining_ = kBlockSize; char* result = alloc_ptr_; alloc_ptr_ += bytes; alloc_bytes_remaining_ -= bytes; return result; }
下面来看下严格对齐的分配方式
char* Arena::AllocateAligned(size_t bytes) { const int align = sizeof(void*); // We'll align to pointer size assert((align & (align-1)) == 0); // Pointer size should be a power of 2 size_t current_mod = reinterpret_cast<uintptr_t>(alloc_ptr_) & (align-1); ///计算出alloc_ptr_ % align
size_t slop = (current_mod == 0 ? 0 : align - current_mod); ///对齐还需要向前移动的大小
size_t needed = bytes + slop;
char* result; if (needed <= alloc_bytes_remaining_) { result = alloc_ptr_ + slop; alloc_ptr_ += needed; alloc_bytes_remaining_ -= needed; } else { // AllocateFallback always returned aligned memory result = AllocateFallback(bytes); } assert((reinterpret_cast<uintptr_t>(result) & (align-1)) == 0); return result; } char* Arena::AllocateNewBlock(size_t block_bytes) { char* result = new char[block_bytes]; blocks_memory_ += block_bytes; blocks_.push_back(result); return result; }