C++多线程编程第十讲--future其他成员函数、shared_future、atomic
//(1)std::future的其他成员函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | #include<iostream> #include<mutex> #include<thread> #include<future> using namespace std; int my_thread() { cout << "my_thread start... " << "thread id = " << this_thread::get_id() << endl; std::chrono::milliseconds duro(5000); std::this_thread::sleep_for(duro); cout << "my_thread end... " << "thread id = " << this_thread::get_id() << endl; return 5; } int main() { cout << "main() start... " << "thread id = " << std::this_thread::get_id() << endl; std::future< int > result = std::async(my_thread); std::future_status status = result.wait_for(std::chrono::milliseconds(6000)); //等待 if (status == std::future_status::timeout) { //超时表示等待的线程还没有执行结束 cout << "overtime..." << endl; } else if (status == std::future_status::ready) { cout << "ready..." << endl; } else if (status == std::future_status::deferred) //线程还没开始执行 { cout << "deferred..." << endl; //对应async中第一个参数中的std::launch::deferred } cout << result.get() << endl; //主线程会在get这里一致等到新的线程返回结果 cout << "main() end... " << "thread id = " << std::this_thread::get_id() << endl; return 0; } //(2)std::shared_future // 是一个类模板,他的get函数就不是转移了,而是复制。 // // 如以下程序,只能在线程2中调用get,如果还有其他线程想要线程1返回的结果再次调用get的时候 // 程序就会报错 #include<iostream> #include<mutex> #include<thread> #include<future> using namespace std; int my_thread( int mypar) { cout << "my_thread start... " << "thread id = " << this_thread::get_id() << endl; std::chrono::milliseconds duro(5000); std::this_thread::sleep_for(duro); cout << "my_thread end... " << "thread id = " << this_thread::get_id() << endl; return mypar; } void my_thread2(std::future< int >& fut) { cout << "my_thread2 start..." << "thread id = " << this_thread::get_id() << endl; //程序运行到这里,即便线程1还没有执行结束,调用get也会等待线程1返回结果再运行 cout << "fut.get() = " << fut.get() << endl; //打印返回的结果,get函数设计是一个移动语义,所以不能调用两次。 cout << "my_thread2 end..." << "thread id = " << this_thread::get_id() << endl; } int main() { cout << "main() start... " << "thread id = " << std::this_thread::get_id() << endl; std::packaged_task< int ( int )> mypt(my_thread); //把函数my_thread包装起来 std:: thread t1(std::ref(mypt), 5); //用一个package_task对象作为线程的参数 std::future< int > result = mypt.get_future(); //std::shared_future<int> s_fut(std::move(result)); //使用右值 std:: thread t2(my_thread2, std::ref(result)); //future对象不能拷贝,所以只能以std::ref的方式进行传递 t2.join(); t1.join(); cout << "main() end... " << "thread id = " << std::this_thread::get_id() << endl; return 0; } // 则使用shared_future避免以上的情况 #include<iostream> #include<mutex> #include<thread> #include<future> using namespace std; int my_thread( int mypar) { cout << "my_thread start... " << "thread id = " << this_thread::get_id() << endl; std::chrono::milliseconds duro(5000); std::this_thread::sleep_for(duro); cout << "my_thread end... " << "thread id = " << this_thread::get_id() << endl; return mypar; } void my_thread2(std::shared_future< int >& s_fut) { cout << "my_thread2 start..." << "thread id = " << this_thread::get_id() << endl; //程序运行到这里,即便线程1还没有执行结束,调用get也会等待线程1返回结果再运行 cout << "fut.get() = " << s_fut.get() << endl; //get只是复制,可以调用多次 cout << "my_thread2 end..." << "thread id = " << this_thread::get_id() << endl; } void my_thread3(std::shared_future< int >& s_fut) { cout << "my_thread3 start..." << "thread id = " << this_thread::get_id() << endl; //程序运行到这里,即便线程1还没有执行结束,调用get也会等待线程1返回结果再运行 cout << "fut.get() = " << s_fut.get() << endl; //get只是复制,可以调用多次 cout << "my_thread3 end..." << "thread id = " << this_thread::get_id() << endl; } int main() { cout << "main() start... " << "thread id = " << std::this_thread::get_id() << endl; std::packaged_task< int ( int )> mypt(my_thread); //把函数my_thread包装起来 std:: thread t1(std::ref(mypt), 5); //用一个package_task对象作为线程的参数 std::future< int > result = mypt.get_future(); //bool value = result.valid(); //可以用来判断result中是否有有效值 std::shared_future< int > s_fut(std::move(result)); //使用右值 //std::shared_future<int> s_fut(result.share()); //使用右值,两种写法都可以 std:: thread t2(my_thread2, std::ref(s_fut)); //future对象不能拷贝,所以只能以std::ref的方式进行传递 std:: thread t3(my_thread3, std::ref(s_fut)); //future对象不能拷贝,所以只能以std::ref的方式进行传递 t2.join(); t1.join(); t3.join(); cout << "main() end... " << "thread id = " << std::this_thread::get_id() << endl; return 0; } #include<iostream> #include<mutex> #include<thread> #include<future> using namespace std; int my_thread( int mypar) { cout << "my_thread start... " << "thread id = " << this_thread::get_id() << endl; std::chrono::milliseconds duro(5000); std::this_thread::sleep_for(duro); cout << "my_thread end... " << "thread id = " << this_thread::get_id() << endl; return mypar; } void my_thread2(std::shared_future< int >& s_fut) { cout << "my_thread2 start..." << "thread id = " << this_thread::get_id() << endl; //程序运行到这里,即便线程1还没有执行结束,调用get也会等待线程1返回结果再运行 cout << "fut.get() = " << s_fut.get() << endl; //get只是复制,可以调用多次 cout << "my_thread2 end..." << "thread id = " << this_thread::get_id() << endl; } void my_thread3(std::shared_future< int >& s_fut) { cout << "my_thread3 start..." << "thread id = " << this_thread::get_id() << endl; //程序运行到这里,即便线程1还没有执行结束,调用get也会等待线程1返回结果再运行 cout << "fut.get() = " << s_fut.get() << endl; //get只是复制,可以调用多次 cout << "my_thread3 end..." << "thread id = " << this_thread::get_id() << endl; } int main() { cout << "main() start... " << "thread id = " << std::this_thread::get_id() << endl; std::packaged_task< int ( int )> mypt(my_thread); //把函数my_thread包装起来 std:: thread t1(std::ref(mypt), 5); //用一个package_task对象作为线程的参数 //bool value = result.valid(); //可以用来判断result中是否有有效值 std::shared_future< int > s_fut(mypt.get_future()); //使用右值 //std::shared_future<int> s_fut(result.share()); //使用右值,两种写法都可以 std:: thread t2(my_thread2, std::ref(s_fut)); //future对象不能拷贝,所以只能以std::ref的方式进行传递 std:: thread t3(my_thread3, std::ref(s_fut)); //future对象不能拷贝,所以只能以std::ref的方式进行传递 t2.join(); t1.join(); t3.join(); cout << "main() end... " << "thread id = " << std::this_thread::get_id() << endl; return 0; } //(3)原子操作std::atomic //(3.1)原子操作概念引出范例 #include<iostream> #include<mutex> #include<thread> #include<future> using namespace std; int g_mycount = 0; mutex g_my_mutex; void my_thread() { int i = 0; for (; i < 1000000; ++i) { g_my_mutex.lock(); //防止++的执行被打断 g_mycount++; g_my_mutex.unlock(); } } int main() { cout << "main() start... " << "thread id = " << std::this_thread::get_id() << endl; thread mythread(my_thread); thread mythread2(my_thread); mythread.join(); mythread2.join(); cout << g_mycount << endl; cout << "main() end... " << "thread id = " << std::this_thread::get_id() << endl; return 0; } // 但是以上的程序效率太低,原子操作也会有相同的作用。互斥量的加锁针对的是一个代码段,而原子操作 // 针对的是一个变量。原子操作用于统计功能等。 //(3.2)基本的std::atomic用法范例 #include<iostream> #include<mutex> #include<thread> #include<future> using namespace std; //int g_mycount = 0; std::atomic< int > g_mycount = 0; //具备原子操作的整型值 void my_thread() { int i = 0; for (; i < 1000000; ++i) { g_mycount++; } } int main() { cout << "main() start... " << "thread id = " << std::this_thread::get_id() << endl; thread mythread(my_thread); thread mythread2(my_thread); mythread.join(); mythread2.join(); cout << g_mycount << endl; cout << "main() end... " << "thread id = " << std::this_thread::get_id() << endl; return 0; } #include<iostream> #include<mutex> #include<thread> #include<future> using namespace std; //int g_mycount = 0; std::atomic< bool > g_ifend = false ; void my_thread() { std::chrono::milliseconds dura(1000); // while (g_ifend == false ) { cout << "my_thread id = " << std::this_thread::get_id() << endl; std::this_thread::sleep_for(dura); } } int main() { cout << "main() start... " << "thread id = " << std::this_thread::get_id() << endl; thread mythread(my_thread); thread mythread2(my_thread); std::chrono::milliseconds dura(5000); // std::this_thread::sleep_for(dura); g_ifend = true ; mythread.join(); mythread2.join(); cout << "main() end... " << "thread id = " << std::this_thread::get_id() << endl; return 0; } |
posted on 2021-10-26 08:25 xcxfury001 阅读(46) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· Ollama——大语言模型本地部署的极速利器
· 使用C#创建一个MCP客户端
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· Windows编程----内核对象竟然如此简单?
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用