C++多线程编程第五讲--互斥量概念、用法、死锁演示及解决详解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
//(1)互斥量的(mutex)的基本概念
// 就是一个类的对象。多个线程可以尝试对一个mutex的对象进行lock,但是只有一个线程成功,其他线程需要等待。
//(2)互斥量的用法
    //(2.1)lock(), unlock():要成对使用
   #include<iostream>
    #include<thread>
    #include<vector>
    #include<list>
    #include<mutex>
     
    using namespace std;
     
    class A
    {
    public:
        //把收到的消息,入到一个队列中
        void inMsgRecvQueue()
        {
            int i;
            for (i = 0; i < 100000; ++i)
            {
     
                cout << "push_back num = " << i << endl;
                //lock之后只能有一个线程可以对msgQueue队列做操作
                my_mutex.lock();
                msgQueue.push_back(i);                   //数字i就是玩家的命令。
                my_mutex.unlock();
            }
        }
     
        bool outMsgProc(int& command)
        {
            my_mutex.lock();
            if (!msgQueue.empty())
            {
                //消息不为空
                command = msgQueue.front();
                msgQueue.pop_front();          //移除首元素
     
                my_mutex.unlock();
                return true;
            }
            else
            {
                my_mutex.unlock();
                return false;
            }
        }
     
        //把数据从消息队列中取出
        void outMsgRecvQueue()
        {
            int i;
            int command = 0;
            for (i = 0; i < 100000; ++i)
            {
                int result = outMsgProc(command);
                if (result == true)
                {
                    cout << "command = " << command << endl;
                }
                else
                {
                    cout << "msgQueue is empty" << endl;
                }
            }
        }
     
    private:
        list<int> msgQueue;
        mutex my_mutex;       //创建一个互斥量
    };
     
    int main()
    {
        A myobj;
     
        thread myOutMsg(&A::outMsgRecvQueue, std::ref(myobj));   //保证线程中用的同一个对象
        thread myInMsg(&A::inMsgRecvQueue, std::ref(myobj));
     
        myOutMsg.join();
        myInMsg.join();
     
        cout << "main thread end..." << endl;
        return 0;
    }
//(2.2)std::lock_guard类模板,与智能指针的作用是一致的,就是为了更加智能的释放资源。
    #include<iostream>
    #include<thread>
    #include<vector>
    #include<list>
    #include<mutex>
     
    using namespace std;
     
    class A
    {
    public:
        //把收到的消息,入到一个队列中
        void inMsgRecvQueue()
        {
            int i;
            for (i = 0; i < 100000; ++i)
            {
     
                cout << "push_back num = " << i << endl;
                //lock之后只能有一个线程可以对msgQueue队列做操作
                lock_guard<mutex> sbguard(my_mutex);
                msgQueue.push_back(i);                   //数字i就是玩家的命令。
            }
        }
     
        bool outMsgProc(int& command)
        {
            lock_guard<mutex> sbguard(my_mutex);
            if (!msgQueue.empty())
            {
                //消息不为空
                command = msgQueue.front();
                msgQueue.pop_front();          //移除首元素
     
                return true;
            }
            else
            {
                return false;
            }
        }
     
        //把数据从消息队列中取出
        void outMsgRecvQueue()
        {
            int i;
            int command = 0;
            for (i = 0; i < 100000; ++i)
            {
                int result = outMsgProc(command);
                if (result == true)
                {
                    cout << "command = " << command << endl;
                }
                else
                {
                    cout << "msgQueue is empty" << endl;
                }
            }
        }
     
    private:
        list<int> msgQueue;
        mutex my_mutex;       //创建一个互斥量
    };
     
    int main()
    {
        A myobj;
     
        thread myOutMsg(&A::outMsgRecvQueue, std::ref(myobj));   //保证线程中用的同一个对象
        thread myInMsg(&A::inMsgRecvQueue, std::ref(myobj));
     
        myOutMsg.join();
        myInMsg.join();
     
        cout << "main thread end..." << endl;
        return 0;
    }
//(3)死锁:必须要有两把锁,才能出现死锁。
    //(3.1)死锁演示
 
  #include<iostream>
    #include<thread>
    #include<vector>
    #include<list>
    #include<mutex>
     
    using namespace std;
     
    class A
    {
    public:
        //把收到的消息,入到一个队列中
        void inMsgRecvQueue()
        {
            int i;
            for (i = 0; i < 100000; ++i)
            {
     
                cout << "push_back num = " << i << endl;
                //lock之后只能有一个线程可以对msgQueue队列做操作
                my_mutex1.lock();
                //...
                my_mutex2.lock();
                //...
                msgQueue.push_back(i);                   //数字i就是玩家的命令。
                //...
                my_mutex2.unlock();
                //...
                my_mutex1.unlock();
     
            }
        }
     
        bool outMsgProc(int& command)
        {
            my_mutex2.lock();
            //...
            my_mutex1.lock();
            if (!msgQueue.empty())
            {
                //消息不为空
                command = msgQueue.front();
                msgQueue.pop_front();          //移除首元素
     
                my_mutex1.unlock();
                my_mutex2.unlock();
                return true;
            }
            else
            {
                my_mutex1.unlock();
                my_mutex2.unlock();
                return false;
            }
        }
     
        //把数据从消息队列中取出
        void outMsgRecvQueue()
        {
            int i;
            int command = 0;
            for (i = 0; i < 100000; ++i)
            {
                int result = outMsgProc(command);
                if (result == true)
                {
                    cout << "command = " << command << endl;
                }
                else
                {
                    cout << "msgQueue is empty" << endl;
                }
            }
        }
     
    private:
        list<int> msgQueue;
        mutex my_mutex1;
        mutex my_mutex2;
    };
     
    int main()
    {
        A myobj;
     
        thread myOutMsg(&A::outMsgRecvQueue, std::ref(myobj));   //保证线程中用的同一个对象
        thread myInMsg(&A::inMsgRecvQueue, std::ref(myobj));
     
        myOutMsg.join();
        myInMsg.join();
     
        cout << "main thread end..." << endl;
        return 0;
    }
 
    //(3.2)死锁的一般解决方案:只要保证锁的lock顺序一致就不会出现死锁。
 
    #include<iostream>
    #include<thread>
    #include<vector>
    #include<list>
    #include<mutex>
     
    using namespace std;
     
    class A
    {
    public:
        //把收到的消息,入到一个队列中
        void inMsgRecvQueue()
        {
            int i;
            for (i = 0; i < 100000; ++i)
            {
     
                cout << "push_back num = " << i << endl;
                //lock之后只能有一个线程可以对msgQueue队列做操作
                my_mutex1.lock();
                //...
                my_mutex2.lock();
                //...
                msgQueue.push_back(i);                   //数字i就是玩家的命令。
                //...
                my_mutex2.unlock();
                //...
                my_mutex1.unlock();
     
            }
        }
     
        bool outMsgProc(int& command)
        {
            my_mutex1.lock();
            //...
            my_mutex2.lock();
            if (!msgQueue.empty())
            {
                //消息不为空
                command = msgQueue.front();
                msgQueue.pop_front();          //移除首元素
     
                my_mutex2.unlock();
                my_mutex1.unlock();
                return true;
            }
            else
            {
                my_mutex2.unlock();
                my_mutex1.unlock();
                return false;
            }
        }
     
        //把数据从消息队列中取出
        void outMsgRecvQueue()
        {
            int i;
            int command = 0;
            for (i = 0; i < 100000; ++i)
            {
                int result = outMsgProc(command);
                if (result == true)
                {
                    cout << "command = " << command << endl;
                }
                else
                {
                    cout << "msgQueue is empty" << endl;
                }
            }
        }
     
    private:
        list<int> msgQueue;
        mutex my_mutex1;
        mutex my_mutex2;
    };
     
    int main()
    {
        A myobj;
     
        thread myOutMsg(&A::outMsgRecvQueue, std::ref(myobj));   //保证线程中用的同一个对象
        thread myInMsg(&A::inMsgRecvQueue, std::ref(myobj));
     
        myOutMsg.join();
        myInMsg.join();
     
        cout << "main thread end..." << endl;
        return 0;
    }
 
//(3.3)std::lock()函数模板
    // 一次锁住两个或两个以上的互斥量。如果这些锁中其中有一个没有lock成功,则释放已经lock的mutex对象,
    // 并在这句代码中不断的循环执行为所有的mutex对象上锁的行为,直到所有的互斥量都锁成功为止。
 
  #include<iostream>
    #include<thread>
    #include<vector>
    #include<list>
    #include<mutex>
     
    using namespace std;
     
    class A
    {
    public:
        //把收到的消息,入到一个队列中
        void inMsgRecvQueue()
        {
            int i;
            for (i = 0; i < 100000; ++i)
            {
     
                cout << "push_back num = " << i << endl;
                //lock之后只能有一个线程可以对msgQueue队列做操作
                std::lock(my_mutex1, my_mutex2);
                //...
                msgQueue.push_back(i);                   //数字i就是玩家的命令。
                //...
                my_mutex2.unlock();
                //...
                my_mutex1.unlock();
     
            }
        }
     
        bool outMsgProc(int& command)
        {
            std::lock(my_mutex1, my_mutex2);
            if (!msgQueue.empty())
            {
                //消息不为空
                command = msgQueue.front();
                msgQueue.pop_front();          //移除首元素
     
                my_mutex2.unlock();
                my_mutex1.unlock();
                return true;
            }
            else
            {
                my_mutex2.unlock();
                my_mutex1.unlock();
                return false;
            }
        }
     
        //把数据从消息队列中取出
        void outMsgRecvQueue()
        {
            int i;
            int command = 0;
            for (i = 0; i < 100000; ++i)
            {
                int result = outMsgProc(command);
                if (result == true)
                {
                    cout << "command = " << command << endl;
                }
                else
                {
                    cout << "msgQueue is empty" << endl;
                }
            }
        }
     
    private:
        list<int> msgQueue;
        mutex my_mutex1;
        mutex my_mutex2;
    };
     
    int main()
    {
        A myobj;
     
        thread myOutMsg(&A::outMsgRecvQueue, std::ref(myobj));   //保证线程中用的同一个对象
        thread myInMsg(&A::inMsgRecvQueue, std::ref(myobj));
     
        myOutMsg.join();
        myInMsg.join();
     
        cout << "main thread end..." << endl;
        return 0;
    }
 
//(3.4)std::lock_guard的adopt_lock参数
    //不必自己unlock
#include<iostream>
#include<thread>
#include<vector>
#include<list>
#include<mutex>
 
using namespace std;
 
class A
{
public:
    //把收到的消息,入到一个队列中
    void inMsgRecvQueue()
    {
        int i;
        for (i = 0; i < 100000; ++i)
        {
             
            cout << "push_back num = " << i << endl;
            //lock之后只能有一个线程可以对msgQueue队列做操作
            std::lock(my_mutex1, my_mutex2);
            lock_guard<mutex> lock_guard1(my_mutex1, std::adopt_lock);
            lock_guard<mutex> lock_guard2(my_mutex2, std::adopt_lock);
            //...
            msgQueue.push_back(i);                   //数字i就是玩家的命令。
            //...
        }
    }
 
    bool outMsgProc(int &command)
    {
        std::lock(my_mutex1, my_mutex2);
        lock_guard<mutex> lock_guard1(my_mutex1, std::adopt_lock);
        lock_guard<mutex> lock_guard2(my_mutex2, std::adopt_lock);
        if (!msgQueue.empty())
        {
            //消息不为空
            command = msgQueue.front();
            msgQueue.pop_front();          //移除首元素
            return true;
        }
        else
        {
            return false;
        }
    }
 
    //把数据从消息队列中取出
    void outMsgRecvQueue()
    {
        int i;
        int command = 0;
        for (i = 0; i < 100000; ++i)
        {
            int result = outMsgProc(command);
            if (result == true)
            {
                cout << "command = " << command << endl;
            }
            else
            {
                cout << "msgQueue is empty" << endl;
            }
        }
    }
 
private:
    list<int> msgQueue;
    mutex my_mutex1;
    mutex my_mutex2;
};
 
int main()
{
    A myobj;
 
    thread myOutMsg(&A::outMsgRecvQueue, std::ref(myobj));   //保证线程中用的同一个对象
    thread myInMsg(&A::inMsgRecvQueue, std::ref(myobj));
 
    myOutMsg.join();
    myInMsg.join();
 
    cout << "main thread end..." << endl;
    return 0;
}

  

posted on   xcxfury001  阅读(76)  评论(0编辑  收藏  举报

编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· Ollama——大语言模型本地部署的极速利器
· 使用C#创建一个MCP客户端
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· Windows编程----内核对象竟然如此简单?
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示