创建型设计模式:工厂模式
什么时候该用工厂模式?相对于直接 new 来创建对象,用工厂模式来创建究竟有什么好处呢?
简单工厂(Simple Factory)
什么是简单工厂,通过一个例子做介绍:
根据配置文件的后缀(json、xml、yaml、properties),选择不同的解析器(JsonRuleConfigParser、XmlRuleConfigParser……),将存储在文件中的配置解析成内存对象 RuleConfig。
public class RuleConfigSource { public RuleConfig load(String ruleConfigFilePath) { String ruleConfigFileExtension = getFileExtension(ruleConfigFilePath); IRuleConfigParser parser = RuleConfigParserFactory.createParser(ruleConfigFileExtension); if (parser == null) { throw new InvalidRuleConfigException( "Rule config file format is not supported: " + ruleConfigFilePath); } String configText = ""; //从ruleConfigFilePath文件中读取配置文本到configText中 RuleConfig ruleConfig = parser.parse(configText); return ruleConfig; } private String getFileExtension(String filePath) { //...解析文件名获取扩展名,比如rule.json,返回json return "json"; } }
public class RuleConfigParserFactory { private static final Map<String, RuleConfigParser> cachedParsers = new HashMap<>(); static { cachedParsers.put("json", new JsonRuleConfigParser()); cachedParsers.put("xml", new XmlRuleConfigParser()); cachedParsers.put("yaml", new YamlRuleConfigParser()); cachedParsers.put("properties", new PropertiesRuleConfigParser()); } public static IRuleConfigParser createParser(String configFormat) { if (configFormat == null || configFormat.isEmpty()) { return null;//返回null还是IllegalArgumentException全凭你自己说了算 } IRuleConfigParser parser = cachedParsers.get(configFormat.toLowerCase()); return parser; } }
一个只负责创建对象的类,就叫做工厂类,大部分工厂类都是以“Factory”这个单词结尾的,但也不是必须的,比如 Java 中的 DateFormat、Calender。除此之外,工厂类中创建对象的方法一般都是 create 开头,比如代码中的 createParser(),但有的也命名为 getInstance()、createInstance()、newInstance(),有的甚至命名为 valueOf()(比如 Java String 类的 valueOf() 函数)等等,这个我们根据具体的场景和习惯来命名就好。
工厂方法(Factory Method)
大家可以看到,简单工厂模式中存在一定违反开闭原则的内容,比如要增加一种Parser()就需要修改工厂类,工厂方法模式比起简单工厂模式更加符合开闭原则,利用多态将每一个实例的生成都放在工厂类中,代码如下:
public interface IRuleConfigParserFactory { IRuleConfigParser createParser(); } public class JsonRuleConfigParserFactory implements IRuleConfigParserFactory { @Override public IRuleConfigParser createParser() { return new JsonRuleConfigParser(); } } public class XmlRuleConfigParserFactory implements IRuleConfigParserFactory { @Override public IRuleConfigParser createParser() { return new XmlRuleConfigParser(); } } public class YamlRuleConfigParserFactory implements IRuleConfigParserFactory { @Override public IRuleConfigParser createParser() { return new YamlRuleConfigParser(); } } public class PropertiesRuleConfigParserFactory implements IRuleConfigParserFactory { @Override public IRuleConfigParser createParser() { return new PropertiesRuleConfigParser(); } }
从上面的工厂方法的实现来看,一切都很完美,但是实际上存在挺大的问题。问题存在于这些工厂类的使用上。接下来,我们看一下,如何用这些工厂类来实现 RuleConfigSource 的 load() 函数。具体的代码如下所示:
public class RuleConfigSource { public RuleConfig load(String ruleConfigFilePath) { String ruleConfigFileExtension = getFileExtension(ruleConfigFilePath); IRuleConfigParserFactory parserFactory = null; if ("json".equalsIgnoreCase(ruleConfigFileExtension)) { parserFactory = new JsonRuleConfigParserFactory(); } else if ("xml".equalsIgnoreCase(ruleConfigFileExtension)) { parserFactory = new XmlRuleConfigParserFactory(); } else if ("yaml".equalsIgnoreCase(ruleConfigFileExtension)) { parserFactory = new YamlRuleConfigParserFactory(); } else if ("properties".equalsIgnoreCase(ruleConfigFileExtension)) { parserFactory = new PropertiesRuleConfigParserFactory(); } else { throw new InvalidRuleConfigException("Rule config file format is not supported: " + ruleConfigFilePath); } IRuleConfigParser parser = parserFactory.createParser(); String configText = ""; //从ruleConfigFilePath文件中读取配置文本到configText中 RuleConfig ruleConfig = parser.parse(configText); return ruleConfig; } private String getFileExtension(String filePath) { //...解析文件名获取扩展名,比如rule.json,返回json return "json"; } }
工厂方法与简单工厂的结合
从上面的代码实现来看,工厂类对象的创建逻辑又耦合进了 load() 函数中,跟我们最初的代码版本非常相似,引入工厂方法非但没有解决问题,反倒让设计变得更加复杂了。那怎么来解决这个问题呢?
可以把工厂类对象的创建,交给简单工厂
public class RuleConfigSource { public RuleConfig load(String ruleConfigFilePath) { String ruleConfigFileExtension = getFileExtension(ruleConfigFilePath); IRuleConfigParserFactory parserFactory = RuleConfigParserFactoryMap.getParserFactory(ruleConfigFileExtension); if (parserFactory == null) { throw new InvalidRuleConfigException("Rule config file format is not supported: " + ruleConfigFilePath); } IRuleConfigParser parser = parserFactory.createParser(); String configText = ""; //从ruleConfigFilePath文件中读取配置文本到configText中 RuleConfig ruleConfig = parser.parse(configText); return ruleConfig; } private String getFileExtension(String filePath) { //...解析文件名获取扩展名,比如rule.json,返回json return "json"; } } //因为工厂类只包含方法,不包含成员变量,完全可以复用, //不需要每次都创建新的工厂类对象,所以,简单工厂模式的第二种实现思路更加合适。 public class RuleConfigParserFactoryMap { //工厂的工厂 private static final Map<String, IRuleConfigParserFactory> cachedFactories = new HashMap<>(); static { cachedFactories.put("json", new JsonRuleConfigParserFactory()); cachedFactories.put("xml", new XmlRuleConfigParserFactory()); cachedFactories.put("yaml", new YamlRuleConfigParserFactory()); cachedFactories.put("properties", new PropertiesRuleConfigParserFactory()); } public static IRuleConfigParserFactory getParserFactory(String type) { if (type == null || type.isEmpty()) { return null; } IRuleConfigParserFactory parserFactory = cachedFactories.get(type.toLowerCase()); return parserFactory; } }
实际上,对于规则配置文件解析这个应用场景来说,工厂模式需要额外创建诸多 Factory 类,也会增加代码的复杂性,而且,每个 Factory 类只是做简单的 new 操作,功能非常单薄(只有一行代码),也没必要设计成独立的类,所以,在这个应用场景下,简单工厂模式简单好用,比工厂方法模式更加合适。
判断要不要使用工厂模式的最本质的参考标准
封装变化:创建逻辑有可能变化,封装成工厂类之后,创建逻辑的变更对调用者透明。
代码复用:创建代码抽离到独立的工厂类之后可以复用。
隔离复杂性:封装复杂的创建逻辑,调用者无需了解如何创建对象。
控制复杂度:将创建代码抽离出来,让原本的函数或类职责更单一,代码更简洁。
那什么时候该用工厂方法模式,而非简单工厂模式呢?
之所以将某个代码块剥离出来,独立为函数或者类,原因是这个代码块的逻辑过于复杂,剥离之后能让代码更加清晰,更加可读、可维护。但是,如果代码块本身并不复杂,就几行代码而已,我们完全没必要将它拆分成单独的函数或者类。
基于这个设计思想,当对象的创建逻辑比较复杂,不只是简单的 new 一下就可以,而是要组合其他类对象,做各种初始化操作的时候,我们推荐使用工厂方法模式,将复杂的创建逻辑拆分到多个工厂类中,让每个工厂类都不至于过于复杂。而使用简单工厂模式,将所有的创建逻辑都放到一个工厂类中,会导致这个工厂类变得很复杂。
除此之外,在某些场景下,如果对象不可复用,那工厂类每次都要返回不同的对象。如果我们使用简单工厂模式来实现,就只能选择第一种包含 if 分支逻辑的实现方式。如果我们还想避免烦人的 if-else 分支逻辑,这个时候,我们就推荐使用工厂方法模式。
依赖注入容器
依赖注入框架,或者叫依赖注入容器(Dependency Injection Container),简称 DI 容器,这是一个复杂的创建对象的工程,很适合工厂模式。
工厂模式和 DI 容器有何区别?
实际上,DI 容器底层最基本的设计思路就是基于工厂模式的。DI 容器相当于一个大的工厂类,负责在程序启动的时候,根据配置(要创建哪些类对象,每个类对象的创建需要依赖哪些其他类对象)事先创建好对象。
当应用程序需要使用某个类对象的时候,直接从容器中获取即可。正是因为它持有一堆对象,所以这个框架才被称为“容器”。
DI 容器相对于刚才的例子来说,它处理的是更大的对象创建工程。DI 容器负责的是整个应用中所有类对象的创建。
除此之外,DI 容器负责的事情要比单纯的工厂模式要多。比如,它还包括配置的解析、对象生命周期的管理。
一个简单的 DI 容器的核心功能一般有三个:配置解析、对象创建和对象生命周期管理。
首先,我们来看配置解析
刚才的例子中,工厂类要创建哪个类对象是事先确定好的,并且是写死在工厂类代码中的。
作为一个通用的框架来说,框架代码跟应用代码应该是高度解耦的,DI 容器事先并不知道应用会创建哪些对象,不可能把某个应用要创建的对象写死在框架代码中。
所以,我们需要通过一种形式,让应用告知 DI 容器要创建哪些对象。这种形式就是我们要讲的配置。我们将需要由 DI 容器来创建的类对象和创建类对象的必要信息(使用哪个构造函数以及对应的构造函数参数都是什么等等),放到配置文件中。容器读取配置文件,根据配置文件提供的信息来创建对象。
下面是一个典型的 Spring 容器的配置文件。Spring 容器读取这个配置文件,解析出要创建的两个对象:rateLimiter 和 redisCounter,并且得到两者的依赖关系:rateLimiter 依赖 redisCounter。
public class RateLimiter { private RedisCounter redisCounter; public RateLimiter(RedisCounter redisCounter) { this.redisCounter = redisCounter; } public void test() { System.out.println("Hello World!"); } //... } public class RedisCounter { private String ipAddress; private int port; public RedisCounter(String ipAddress, int port) { this.ipAddress = ipAddress; this.port = port; } //... } 配置文件beans.xml: <beans> <bean id="rateLimiter" class="com.xzg.RateLimiter"> <constructor-arg ref="redisCounter"/> </bean> <bean id="redisCounter" class="com.xzg.redisCounter"> <constructor-arg type="String" value="127.0.0.1"> <constructor-arg type="int" value=1234> </bean> </beans>
其次,我们再来看对象创建。
在 DI 容器中,如果我们给每个类都对应创建一个工厂类,那项目中类的个数会成倍增加,这会增加代码的维护成本。
我们只需要将所有类对象的创建都放到一个工厂类中完成,利用反射,动态地加载类、创建对象 构建成BeansFactory。
最后,我们来看对象的生命周期管理。
简单工厂模式有两种实现方式,一种是每次都返回新创建的对象,另一种是每次都返回同一个事先创建好的对象,也就是所谓的单例对象。
在 Spring 框架中,我们可以通过配置 scope 属性,来区分这两种不同类型的对象。scope=prototype 表示返回新创建的对象,scope=singleton 表示返回单例对象。
除此之外,我们还可以配置对象是否支持懒加载。如果 lazy-init=true,对象在真正被使用到的时候(比如:BeansFactory.getBean(“userService”))才被被创建;如果 lazy-init=false,对象在应用启动的时候就事先创建好。
不仅如此,我们还可以配置对象的 init-method 和 destroy-method 方法,比如 init-method=loadProperties(),destroy-method=updateConfigFile()。DI 容器在创建好对象之后,会主动调用 init-method 属性指定的方法来初始化对象。在对象被最终销毁之前,DI 容器会主动调用 destroy-method 属性指定的方法来做一些清理工作,比如释放数据库连接池、关闭文件。
如何实现一个简单的 DI 容器
实现一个简单的 DI 容器,核心逻辑只需要包括这样两个部分:配置文件解析、根据配置文件通过“反射”创建对象。
先模拟一个配置文件:
配置文件beans.xml <beans> <bean id="rateLimiter" class="com.xzg.RateLimiter"> <constructor-arg ref="redisCounter"/> </bean> <bean id="redisCounter" class="com.xzg.redisCounter" scope="singleton" lazy-init="true"> <constructor-arg type="String" value="127.0.0.1"> <constructor-arg type="int" value=1234> </bean> </beans>
读取配置文件:
public class Demo { public static void main(String[] args) { ApplicationContext applicationContext = new ClassPathXmlApplicationContext( "beans.xml"); RateLimiter rateLimiter = (RateLimiter) applicationContext.getBean("rateLimiter"); rateLimiter.test(); //... } }
要读取文件需要两个类 接口类 ApplicationContext() 和 实现类 ClassPathXmlApplicationContext()
public interface ApplicationContext { Object getBean(String beanId); } public class ClassPathXmlApplicationContext implements ApplicationContext { private BeansFactory beansFactory; private BeanConfigParser beanConfigParser; public ClassPathXmlApplicationContext(String configLocation) { this.beansFactory = new BeansFactory(); this.beanConfigParser = new XmlBeanConfigParser(); loadBeanDefinitions(configLocation); } private void loadBeanDefinitions(String configLocation) { InputStream in = null; try { in = this.getClass().getResourceAsStream("/" + configLocation); if (in == null) { throw new RuntimeException("Can not find config file: " + configLocation); } List<BeanDefinition> beanDefinitions = beanConfigParser.parse(in); beansFactory.addBeanDefinitions(beanDefinitions); } finally { if (in != null) { try { in.close(); } catch (IOException e) { // TODO: log error } } } } @Override public Object getBean(String beanId) { return beansFactory.getBean(beanId); } }
从上面的代码中,我们可以看出,ClassPathXmlApplicationContext 负责组装 BeansFactory 和 BeanConfigParser 两个类,串联执行流程:从 classpath 中加载 XML 格式的配置文件,通过 BeanConfigParser 解析为统一的 BeanDefinition 格式,然后,BeansFactory 根据 BeanDefinition 来创建对象。下面我们构建BeanConfigParser解析配置文件,配置文件解析主要包含 BeanConfigParser 接口和 XmlBeanConfigParser 实现类,负责将配置文件解析为 BeanDefinition 结构,以便 BeansFactory 根据这个结构来创建对象。因为不是本文重点,只给出一个框架代码如下:
public interface BeanConfigParser { List<BeanDefinition> parse(InputStream inputStream); List<BeanDefinition> parse(String configContent); } public class XmlBeanConfigParser implements BeanConfigParser { @Override public List<BeanDefinition> parse(InputStream inputStream) { String content = null; // TODO:... return parse(content); } @Override public List<BeanDefinition> parse(String configContent) { List<BeanDefinition> beanDefinitions = new ArrayList<>(); // TODO:... return beanDefinitions; } } public class BeanDefinition { private String id; private String className; private List<ConstructorArg> constructorArgs = new ArrayList<>(); private Scope scope = Scope.SINGLETON; private boolean lazyInit = false; // 省略必要的getter/setter/constructors public boolean isSingleton() { return scope.equals(Scope.SINGLETON); } public static enum Scope { SINGLETON, PROTOTYPE } public static class ConstructorArg { private boolean isRef; private Class type; private Object arg; // 省略必要的getter/setter/constructors } }
核心工厂类设计
最后,我们来看,BeansFactory 是如何设计和实现的。这也是我们这个 DI 容器最核心的一个类了。它负责根据从配置文件解析得到的 BeanDefinition 来创建对象。
如果对象的 scope 属性是 singleton,那对象创建之后会缓存在 singletonObjects 这样一个 map 中,下次再请求此对象的时候,直接从 map 中取出返回,不需要重新创建。
如果对象的 scope 属性是 prototype,那每次请求对象,BeansFactory 都会创建一个新的对象返回。
我们需要在程序运行期间,动态地根据配置文件来加载类、创建对象,主要依靠反射。具体代码实现如下所示
public class BeansFactory { private ConcurrentHashMap<String, Object> singletonObjects = new ConcurrentHashMap<>(); private ConcurrentHashMap<String, BeanDefinition> beanDefinitions = new ConcurrentHashMap<>(); public void addBeanDefinitions(List<BeanDefinition> beanDefinitionList) { for (BeanDefinition beanDefinition : beanDefinitionList) { this.beanDefinitions.putIfAbsent(beanDefinition.getId(), beanDefinition); } for (BeanDefinition beanDefinition : beanDefinitionList) { if (beanDefinition.isLazyInit() == false && beanDefinition.isSingleton()) { createBean(beanDefinition); } } } public Object getBean(String beanId) { BeanDefinition beanDefinition = beanDefinitions.get(beanId); if (beanDefinition == null) { throw new NoSuchBeanDefinitionException("Bean is not defined: " + beanId); } return createBean(beanDefinition); } protected Object createBean(BeanDefinition beanDefinition) { if (beanDefinition.isSingleton() && singletonObjects.contains(beanDefinition.getId())) { return singletonObjects.get(beanDefinition.getId()); } Object bean = null; try { Class beanClass = Class.forName(beanDefinition.getClassName()); List<BeanDefinition.ConstructorArg> args = beanDefinition.getConstructorArgs(); if (args.isEmpty()) { bean = beanClass.newInstance(); } else { Class[] argClasses = new Class[args.size()]; Object[] argObjects = new Object[args.size()]; for (int i = 0; i < args.size(); ++i) { BeanDefinition.ConstructorArg arg = args.get(i); if (!arg.getIsRef()) { argClasses[i] = arg.getType(); argObjects[i] = arg.getArg(); } else { BeanDefinition refBeanDefinition = beanDefinitions.get(arg.getArg()); if (refBeanDefinition == null) { throw new NoSuchBeanDefinitionException("Bean is not defined: " + arg.getArg()); } argClasses[i] = Class.forName(refBeanDefinition.getClassName()); argObjects[i] = createBean(refBeanDefinition); } } bean = beanClass.getConstructor(argClasses).newInstance(argObjects); } } catch (ClassNotFoundException | IllegalAccessException | InstantiationException | NoSuchMethodException | InvocationTargetException e) { throw new BeanCreationFailureException("", e); } if (bean != null && beanDefinition.isSingleton()) { singletonObjects.putIfAbsent(beanDefinition.getId(), bean); return singletonObjects.get(beanDefinition.getId()); } return bean; } }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)