【NOIP 2015】 运输计划

题目描述

L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球。

小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物

流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道 是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之 间不会产生任何干扰。

为了鼓励科技创新,L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小 P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。

在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后, 这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的 物流公司的阶段性工作就完成了。

如果小 P 可以自由选择将哪一条航道改造成虫洞,试求出小 P 的物流公司完成阶段 性工作所需要的最短时间是多少?

输入输出格式

输入格式:

 

输入文件名为 transport.in。

第一行包括两个正整数 n、m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。

接下来 n-1 行描述航道的建设情况,其中第 i 行包含三个整数 ai, bi 和 ti,表示第

i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。

接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j个 运输计划是从 uj 号星球飞往 vj 号星球。

 

输出格式:

 

输出文件名为 transport.out。

共 1 行,包含 1 个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

 

输入输出样例

输入样例#1:
6 3 
1 2 3 
1 6 4 
3 1 7 
4 3 6 
3 5 5 
3 6 
2 5 
4 5
输出样例#1:
11

说明

所有测试数据的范围和特点如下表所示

请注意常数因子带来的程序效率上的影响。

=======================================我是分割线============================================

嗯,只要有思路,那这题一定是想到lca的吧。。。(不会lca的请移步度娘)

然后我们就有了一种思想:枚举最长航线经过的所有线段,并计算删去后当前最长。这样复杂度应该是平均O(M^2),好像乱搞搞能五十QAQ(但大数据会TLE+MLE)。

然后我们来想想300000的数据需要什么复杂度:最小估计是要O(log(N)^2*M)。等等,两个log?二分答案?

好,那我们就来二分一下答案。

那么,容易想到,只要对长度大于ans的进行判断就行了。那么对所有长度大于ans的路径求一个交,然后枚举删去交中的哪条边就行了。那么二分的判断条件是交中是否存在边w使max(路径长度)-ans<=w

那么,我们就有了一个复杂度为(m*log^n(n))的算法。

 

posted @ 2016-10-19 20:17  xc01  阅读(196)  评论(0编辑  收藏  举报