机器学习基本概念:batch_size、epoch、 iteration
batch_size
单次训练用的样本数,通常为2^N,如32、64、128...
相对于正常数据集,如果过小,训练数据就收敛困难;过大,虽然相对处理速度加快,但所需内存容量增加。
使用中需要根据计算机性能和训练次数之间平衡。
epoch
1 epoch = 完成一次全部训练样本 = 训练集个数 / batch_size
iterations
1 epoch = 完成一次batch_size个数据样本迭代,通常一次前向传播+一次反向传播